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Abstract

Max-SAT is the optimization version of the SAT problem, with the objective of
finding a variable assignment that maximizes the number of satisfied clauses in
a given clause set. This problem is typically NP-hard. With the in-depth devel-
opment of big data and artificial intelligence, existing algorithms are no longer
adequate, and designing new solving algorithms or optimizing existing ones has
become a current research hotspot. This paper addresses the limitations of warn-
ing propagation algorithms for solving random Max-3-SAT problems, proposes
a warning propagation algorithm based on variable weight calculation, com-
bines it with a random walk algorithm, and presents a novel algorithm called
WWP+WalkSAT. By overcoming these solving limitations, it can better obtain
a set of effective initial solutions, thereby enhancing the algorithm’s local search
capability. Using benchmark instances from the 2016 Max-SAT International
Competition, we conduct comparative experiments on accuracy between the
WWP+WalkSAT algorithm and eight local search algorithms. The experimen-
tal results demonstrate that the WWP+4+WalkSAT algorithm exhibits favorable
performance.
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Abstract: The Max-SAT problem is an optimized version of the SAT problem,
where the goal is to find a variable assignment that satisfies the maximum num-

chinarxiv.org/items/chinaxiv-202204.00054 Machine Translation


https://chinarxiv.org/items/chinaxiv-202204.00054
https://chinarxiv.org/items/chinaxiv-202204.00054

ChinaRxiv [$X]

ber of clauses in a given set. This problem is a classic NP-hard problem. With
the rapid advancement of big data and artificial intelligence, traditional algo-
rithms are no longer adequate, making the design of new solution algorithms or
the optimization of existing ones a current research focus. This paper addresses
the limitations of the warning propagation algorithm in solving random Max-3-
SAT problems by proposing a warning propagation algorithm based on variable
weight calculation. Combined with a random walk algorithm, we present a novel
algorithm called WWP+WalkSAT. By overcoming the limitations of the original
approach, this method obtains a more effective set of initial solutions, thereby en-
hancing the local search capability of the algorithm. Using benchmark instances
from the 2016 Max-SAT International Competition, we conducted comparative
experiments on solution accuracy between WWP+WalkSAT and eight local
search algorithms. Experimental results demonstrate that WWP+WalkSAT
exhibits superior performance.

Keywords: satisfiability problem; maximum satisfiability problem; warning
propagation algorithm; local search algorithm

0 Introduction

Combinatorial optimization problems play a crucial role in operations research,
discrete mathematics, and computer science, with widespread applications in
national defense, transportation, healthcare, and communications. Common
combinatorial optimization problems include the knapsack problem, traveling
salesman problem (TSP), vehicle routing problem (VRP), maximum clique prob-
lem (MCP), minimum vertex cover problem (MVC), and maximum satisfiability
problem (Max-SAT). Among these, Max-SAT is a typical NP-hard problem and
represents the optimization version of the satisfiability problem (SAT). Given a
propositional formula in conjunctive normal form (CNF), which consists of a set
of clauses combined by conjunction, where each clause comprises a disjunction
of variables, the Max-SAT problem seeks to find a variable assignment that sat-
isfies the maximum number of clauses. Max-SAT finds extensive applications
in real-world scenarios such as combinatorial auctions, vehicle scheduling, and
timetabling. Moreover, problems like maximum clique and vertex dominating
sets in graph theory can be transformed into Max-SAT for solution.

Solution approaches for Max-SAT are primarily divided into complete algo-
rithms and incomplete algorithms. Complete algorithms guarantee exact solu-
tions but struggle with large-scale problems due to exponential time complexity.
Recent research has focused on improving branch strategies, inference rules, and
lower bound estimation, leading to effective algorithms such as WmaxSatz and
MiniMaxSat. In contrast, incomplete algorithms can find optimal solutions for
large-scale problems in relatively short time, improving efficiency but without
guaranteeing solution accuracy. The main categories of incomplete algorithms
include approximation algorithms, message passing algorithms, and local search
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algorithms.

Message passing algorithms are heuristic information transfer methods orig-
inating from statistical physics. Through marginal probability computation,
these algorithms have been successfully applied across numerous domains. For
propositional satisfiability problems, three primary message passing algorithms
based on factor graphs exist: warning propagation (WP), belief propagation
(BP), and survey propagation (SP). Currently, message passing algorithms rep-
resent the most effective approach for solving random SAT problems and have
achieved promising results in various combinatorial optimization problems in-
cluding graph coloring, maximum flow, and LDPC coding.

To address Max-SAT problems, researchers have proposed numerous effective
algorithms. However, the convergence and effectiveness of message passing algo-
rithms remain key research concerns. Convergence refers to the stabilization of
iterative message values between successive iterations, while effectiveness refers
to the algorithm’ s ability to solve problems successfully. References [16-18]
analyze the convergence and effectiveness of message passing algorithms, provid-
ing sufficient conditions for convergence. Reference [19] examines convergence
based on specific instance generation models, offering probabilistic conditions
for algorithm convergence.

Further research reveals that in random 3-SAT problems, the ratio of clause
count m to variable count n, known as the constraint density «, significantly
impacts both formula satisfiability and problem difficulty. As « increases, a
phase transition occurs when a ~ 3.52-4.48. Instances outside this phase tran-
sition region are typically easy to solve and highly likely to be satisfiable, while
instances near the phase transition point are hard and highly likely to be un-
satisfiable. Although message passing algorithms are highly effective for hard
instances, they often fail to converge on easy instances outside the phase tran-
sition region.

To address this limitation, we propose a novel variable weight-based warn-
ing propagation algorithm called WWP+WalkSAT. By incorporating variable
weight calculation into warning propagation, our approach obtains an effective
set of initial solutions, which are then refined through random walk-based local
search. This combination breaks the previous limitations of warning propaga-
tion for Max-SAT problems, enabling effective solution of instances across all
regions while improving solution accuracy. Experimental results demonstrate
that WWP+WalkSAT achieves superior performance compared to other local
search algorithms across various instance types.

1 Basic Knowledge

The Max-SAT problem is formally defined as follows: Given a set of proposi-
tional variables X = {x,z,,z3,...,,}, these variables form a set of clauses
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constituting a CNF formula. The objective is to maximize the number of sat-
isfied clauses, or equivalently, minimize the number of unsatisfied clauses. The
mathematical model for Max-SAT is expressed in equations (1) and (2):

Maximize: Z;n:l Fo(zg 2 s i)
Subject to: z; € {0,1},Vi € {1,2,....,n}

Literal: Each Boolean variable z; € X can appear as either a positive literal
(x;) or a negative literal (—z;).

Clause Set: A clauseset C = {C}, Cy, Cs, ..., C,, } consists of m distinct clauses,
where each clause contains one or more literals connected by disjunction. A
clause is satisfied if at least one of its literals evaluates to 1; otherwise, it is
unsatisfied. The number of literals in a clause is called its length. A clause
containing only one literal is called a unit clause.

Conjunctive Normal Form (CNF Formula): A CNF formula F' = C; A
Cy A ... N C,, is satisfiable if and only if every clause in the formula is satisfied.

Factor Graph: A factor graph is a bipartite graph containing two types of
nodes: variable nodes (represented by circles, denoted 1, o, T3, 24, ...) and func-
tion nodes (represented by squares, denoted a, b, ¢, ...). For a CNF formula F' =
CiNCyN...NC,,, all variables correspond to variable nodes, while clauses formed
by disjunctions of variables correspond to function nodes. Edges in the graph
represent connections between variables and clauses, with solid edges indicating
positive literals and dashed edges indicating negative literals. For example, given
the formula F' = (21 V2o VIg) A(—x VI VEy ) A(2 Vs Ve, ) A(—xyVoxg Vi, ),
the corresponding factor graph is shown in Figure 1.

Notation Definitions: - V(a) represents the set of variables appearing in
clause a - V' (a) represents the set of variables appearing positively in clause a -
V'~ (a) represents the set of variables appearing negatively in clause a - V(a)\{i}
represents the set of variables in clause a excluding variable i - V(i) represents
the set of clauses containing variable ¢ - V1 (i) represents the set of clauses where
variable ¢ appears positively - V7 (4) represents the set of clauses where variable
i appears negatively - V(i) \ {a} represents the set of clauses containing variable
1 excluding clause a

Consistency Sets: We define two consistency sets for variable ¢ in clause a:
- U,(i): The set of clauses (excluding a) containing variable ¢ where the value
assignment of ¢ is inconsistent with its assignment in clause a - S, (7): The set
of clauses (excluding a) containing variable ¢ where the value assignment of ¢ is
consistent with its assignment in clause a

These sets are illustrated in the partial factor graph shown in Figure 2.
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2 Variable Weight-Based Warning Propagation Algorithm

The WWP+WalkSAT algorithm improves upon the warning propagation algo-
rithm [20]. Reference [16] analyzed the convergence properties of warning prop-
agation by introducing parameters that transform message values from {0, 1}
to [0,1], utilizing contraction mapping properties in vector spaces to establish
sufficient conditions for convergence and provide theoretical foundations for al-
gorithm performance. Building upon this theoretical basis, WWP+WalkSAT
incorporates variable weight calculation [21] to obtain an effective set of initial
solutions. The goal is to select literals with the highest weights to maximize
clause satisfaction, thereby reducing ineffective clause propagation and acceler-
ating the search process. While traditional warning propagation is effective for
hard instances, it often fails to converge on easy instances. To address this, our
algorithm computes warning values with minimal local information change at
the end of the iteration process, then performs variable weight calculation. Fi-
nally, the initial solution undergoes random walk-based local search to obtain im-
proved solutions and enhance overall algorithm performance. WWP+WalkSAT
breaks the previous limitations of warning propagation for Max-SAT problems,
enabling effective solution of instances across all regions while improving solu-
tion accuracy.

2.1 Warning Propagation Algorithm

Message passing algorithms designed through information transfer demonstrate
strong effectiveness for solving satisfiability problems. Warning propagation is
an iterative algorithm where, in each iteration, every edge (a,4) in the factor
graph receives a warning message representing a Boolean value transmitted from
function node a to variable ¢, denoted as u,_,;. The iterative update equation
is shown in equation (4):

t+1 t
ufz%i) =0 ( Z Ja,j H uél])

jeV(a)\{i} beV(j)\{a}

where t represents the iteration number and 6 is a threshold function defined
as:

1 if
o) =10 o
0 ifxz<0

This formulation indicates that when u,_,; = 1, the satisfaction of clause a
depends on variable ¢; when u,_,; = 0, clause a cannot be satisfied by variable
¢ alone, meaning its satisfaction depends on the values of other variables.

For each variable i, we compute a local cavity field h, and a conflict field ¢, as
shown in equations (5) and (6):
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h; = Z Joi H Up_y;
acV (i) beV(i)\{a}

o= ]I

acV (i) beV(i)\{a}

When ¢; > 0, variable ¢ receives conflicting constraints from two clauses, where
one clause requires ¢ to be 1 while another requires it to be 0. When ¢; = 0,
no conflict occurs for variable 4, and its value can be determined by the local
cavity field as shown in equation (7):

1 it h, >0

unassigned if h; =0

2.2 Variable Weight Calculation

During iteration, basic warning propagation only assigns value 1 to variables
with ¢; = 0 and h; > 0, assigns 0 when h; < 0, and leaves variables with
¢; > 0 unassigned. In solving Max-SAT problems, the quality of variable assign-
ments directly impacts algorithm efficiency, as correct assignments enable more
effective solutions.

We propose a novel heuristic variable weight calculation to determine variable
assignments. Each unassigned variable possesses either a positive or negative
weight, reflecting the difference between its positive and negative literal occur-
rences throughout the formula. The weight indicates the degree to which a
variable should be positive or negative. A positive weight suggests the variable
appears more frequently as a positive literal than a negative literal, and vice
versa. The weight calculation is given by equation (8):

NumberPosLit — NumberNegLit

Wi = varNumberClause

where NumberPosLit counts positive literal occurrences, NumberNegLit counts
negative literal occurrences, and varNumberClause represents the total number
of clauses containing the variable.

For each unassigned variable ¢, if W, > 0, we assign x; = 1; if W, < 0, we assign
x; = 0; and if W, = 0, the variable remains unassigned temporarily.
2.3 Local Search Algorithm

Local search constitutes the majority of computational time in these algorithms.
Conventional random search algorithms select initial solutions randomly, lead-
ing to high variability in solution quality. Good initial solutions enable efficient
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result finding, while poor ones waste time and degrade performance, often revis-
iting solutions and causing cycling behavior. Our variable weight-based warning
propagation algorithm effectively generates a set of initial solutions that signif-
icantly benefit subsequent local search.

The WWP+WalkSAT algorithm first obtains variable assignments through vari-
able weight calculation, constructing an initial solution. This initial solution
may not be optimal in terms of satisfied clauses, requiring further refinement
through local search. For Max-SAT problems, the objective is to find assign-
ments maximizing satisfied clause count. We feed the initial solution into the
WalkSAT algorithm for deeper search.

3 Experimental Results and Analysis

To thoroughly evaluate the effectiveness of our novel variable weight-based warn-
ing propagation algorithm for Max-SAT problems, we tested WWP+WalkSAT
against WalkSAT, SA, GA, VNS-GA, CCLS2akms, CCEHC, Optirise6-in, and
HS-Greedy. WalkSAT, SA, GA, and VNS-GA are classical heuristic algorithms,
while CCLS2-akms, CCEHC, Optirise6-in, and HS-Greedy are solvers from the
2016 Max-SAT Evaluation competition. All experiments utilized random cate-
gory datasets from the 2016 Max-SAT Evaluation.

Table 1 presents statistical comparisons among SA; WalkSAT, WWP+WalkSAT,
GA, and VNS-GA on easy instances, using s3v70c¢1000 and s3v80c1000 datasets
(3-SAT instances with 70 and 80 variables and 1000 clauses). Each dataset
contains 10 instances, comparing the maximum number of satisfied clauses.
Results show that for the 70-variable instances, WWP+WalkSAT achieved
the best results in 7 out of 10 cases, with slightly inferior performance on
the remaining 3. For 80-variable instances, it achieved the best results
in 4 out of 10 cases, with marginally worse performance on the other 6.
However, WWP+WalkSAT significantly outperformed WalkSAT in all cases,
substantially increasing the number of satisfied clauses.

Tables 2 and 3 compare SA, WalkSAT, WWP+WalkSAT, CCEHC, CCLS2akms,
Optirise6-in, and HS-Greedy. Table 2 uses 3-SAT instances with 70, 90, and
110 variables and clause counts ranging from 700 to 1100, with 10 instances per
configuration. Results are reported as average precision (maximum satisfied
clauses divided by total clauses, averaged over 10 instances). WWP+WalkSAT
achieved 95%-99% precision, while CCEHC ranged from 95% to 97%. Among
15 datasets, WWP+WalkSAT ranked first in 12 cases, showing comparable per-
formance to CCEHC and HS-Greedy but significantly outperforming SA, Walk-
SAT, CCLS2akms, and Optirise6-in. This demonstrates WWP+WalkSAT" s
effectiveness for easy instances, surpassing conventional local search algorithms.

Table 3 presents results on hard instances using HG-3SAT-V300-C1000 and HG-
3SAT-V250-C1200 datasets (3-SAT instances with 300 variables and 1000/1200
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clauses). CCLS2akms failed to solve these problems, while WWP+WalkSAT
achieved approximately 98-99% precision, slightly below CCEHC’ s stable 99%
but far superior to SA, WalkSAT, Optirise6-in, and HS-Greedy. On hard in-
stances, WWP+WalkSAT performs slightly worse than CCEHC but excels on
easy instances, confirming its effectiveness for random Max-3-SAT problems.

Additionally, we compared iteration counts between WWP+WalkSAT and
WalkSAT across five datasets (Figures 3-7). Both algorithms ran for 1000
iterations. Except for dataset S3v110c¢1000 where WWP+WalkSAT’ s initial
result was slightly worse, WWP+WalkSAT outperformed WalkSAT from the
start in all other cases. This occurs because WalkSAT uses random initial
assignments that may occasionally be superior, while WWP+WalkSAT" s
initial solutions derive from variable weight calculation, yielding better starting
points.  As iterations progress, WWP+WalkSAT” s satisfied clause count
far exceeds WalkSAT" s. Although WWP+WalkSAT demonstrates excellent
precision, its runtime is longer than WalkSAT” s, representing a direction for
future improvement.

4 Conclusion

This paper presents the WWP+WalkSAT algorithm based on variable weight
calculation for warning propagation. Experimental analysis demonstrates its
advantages for both easy and hard Max-3-SAT instances, breaking the limita-
tions of traditional message passing algorithms. These results provide valuable
reference for future theoretical research. The algorithm also shows promise for
practical applications in combinatorial auctions, vehicle scheduling, robot path
planning, resource allocation, and social network analysis. However, the variable
weight calculation increases computational complexity and time consumption.
Future research will focus on variable pruning strategies and other methods to
improve time efficiency.
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