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Abstract
In open source communities, the promptness and quality of responses to de-
velopers’issues critically determine community vitality. Therefore, identifying
and recommending appropriate problem solvers for newly submitted issues fa-
cilitates community development. This paper proposes a problem solver recom-
mendation model based on a dual-layer graph attention network (GAT-UCG),
constructed from records of developer collaboration relationships and developer
issue participation. Specifically, we first extract information regarding issue par-
ticipants and developer interactions to construct a developer-issue participation
graph and a developer collaboration graph, respectively. An attention mech-
anism is then employed to reallocate edge weights, and Top-N problem solver
recommendations are generated based on issue node embedding representations
obtained from the output layer. Experiments conducted on 7,352 issues from
popular GitHub repositories demonstrate that the proposed GAT-UCG model
achieves superior performance over baseline methods across three metrics: rec-
ommendation accuracy, recall, and F-Score.
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Abstract: In open source communities, the speed and quality of responses
to developer-submitted issues determine community vitality. Therefore, iden-
tifying and recommending suitable participants for newly submitted issues fa-
cilitates community development. This paper proposes a two-layer Graph At-
tention Network model for issue resolution participant recommendation (GAT-
UCG) based on developers’collaborative relationship records and historical issue
participation. The method first obtains participant information and developer
interaction data to construct both a developer-issue participation graph and
a developer collaboration graph. Attention mechanisms then redistribute edge
weights, and the output layer generates issue node embeddings for Top-N par-
ticipant recommendations. Experiments on 7,352 issues from popular GitHub
repositories demonstrate that GAT-UCG outperforms baseline methods in rec-
ommendation accuracy, recall, and F-Score.

Keywords: recommendation system; issue tracking; graph attention network;
participant recommendation; comment network

0 Introduction
Modern open source software development relies on communities that provide
efficient collaboration platforms. GitHub, as the world’s largest open source plat-
form, attracts developers globally. To facilitate project communication, anyone
can create issues, which may be addressed by core team members or external
contributors interested in the problem. Numerous issues await developer re-
sponses and resolution [1]. Applying recommendation technology to identify
suitable participants for each issue can accelerate resolution speed and quality,
thereby promoting community collaboration and development [2,3].

Recent research has proposed various approaches that recommend participants
based on developer profiles, historical problem-solving characteristics, and issue
features [4,5]. Zhou et al. employed Structural Equation Modeling (SEM) to
analyze open source communities and found that social identity is the primary
factor determining user knowledge contribution [6]. Morris et al. discovered that
many issues are resolved by closely connected friends, and relationship strength
influences developer participation enthusiasm [7,8]. Incorporating developer col-
laboration relationships into recommendation models can enhance knowledge
contribution willingness and improve problem-solving efficiency [9,10]. However,
existing models primarily rely on developer expertise and consider only direct
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social relationships [11,12], failing to capture the potential and complex effects
of social relationships on participation motivation. This paper designs a graph
attention network-based participant recommendation model that introduces a
user collaboration graph to improve recommendation effectiveness.

The main contributions are: (1) Based on open source community collabora-
tion characteristics, we combine developer collaboration information and issue
participation records with graph attention networks to construct a two-layer
GAT-UCG model comprising a developer collaboration graph and a developer-
issue participation graph. (2) Experiments on 7,352 issues from popular GitHub
repositories [13] demonstrate that GAT-UCG outperforms baseline methods in
accuracy, recall, and F-Score.

Collaborative relationships among developers play crucial roles in issue resolu-
tion. To fully exploit developer collaboration networks, we design a two-layer
Graph Attention Network model (GAT-UCG) based on developer comment in-
teractions and issue participation records. The overall architecture is shown in
Figure 1.

1 Related Work
Numerous studies have addressed issue participant recommendation. Jiang et
al. proposed a multi-attribute-based reviewer recommendation method incorpo-
rating developer activity and text similarity, finding activity to be the most
important attribute [14]. Chen et al. designed an answerer recommendation
system that targets developers with relevant expertise, noting that timely issue
processing promotes interaction and encourages answerers to improve their re-
sponses [15]. Davoodi et al. presented a hybrid expert recommendation system
using social network-based collaborative filtering to improve prediction accuracy
[16]. Xu proposed a novel social network recommendation method using matrix
factorization to alleviate sparsity and improve accuracy and diversity in complex
contexts [17]. Liu et al. developed a hybrid recommendation algorithm com-
bining information indexing, comment networks, and entropy methods, which
outperformed individual approaches [1].

Traditional recommendation systems suffer from poor generalization, insufficient
expressive power, and difficulty handling non-Euclidean data [18-20]. Graph
Neural Networks (GNNs) have achieved remarkable success in mining hidden
features from complex networks [21]. For GNN-based recommendation, Kipf et
al. proposed a semi-supervised Graph Convolutional Network (GCN) for label
classification using graph topology and node information [22]. Zhang et al. intro-
duced a heuristic link prediction method based on GNNs that learns heuristics
from local subgraphs while maintaining strong generalization [23]. Zhang et
al. also proposed a GCN-based user representation learning method for recom-
mendation using multi-layer graph convolutions [24].

While GCN effectively represents node features, its transductive nature is unsuit-
able for rapidly iterating open source software. To improve scalability, Hamilton
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et al. proposed GraphSAGE, which enhances flexibility and generalization [25].
However, different developers contribute differently to issues, requiring impor-
tance weighting of edges between developer nodes. Veličković et al. introduced
Graph Attention Networks (GAT) that assign different weights to neighbors
based on their features [26]. Subsequent improvements include Tao et al.’s
multimodal GAT recommendation algorithm [27], Fan et al.’s GraphRec archi-
tecture for social recommendation [28], Guo et al.’s GNN-SoR framework that
abstracts user and item features into two graphs [29], and Wang et al.’s use
of clustering functions with attention mechanisms for user-item representation
[30].

Our model first constructs developer features from comment data in issue reso-
lution processes, then uses graph attention to learn neighbor weights and propa-
gate features. Issue tags directly reflect the topic and module of questions, so we
use One-Hot encoding of issue tags as node features for participant recommen-
dation. Compared to existing models, ours more comprehensively integrates
collaboration relationships.

2 Graph Attention Network Based Participant Recommen-
dation
We first analyze comment data in open source communities to validate the
importance of social relationships in issue resolution.

2.1 Importance of Social Relationships for Developer Participation

To verify the proportion of historical collaborations in new issue discussions,
we analyzed data from two popular GitHub repositories: TensorFlow and Ku-
bernetes. We selected issues within specific time periods, established monthly
social interaction baselines using the first month’s data, and compared subse-
quent months’interactions against this baseline to calculate the proportion of
historically interacted relationships. We define historical interaction as users
who have commented in the same issue. Results are shown in Table 1.

Table 1. Statistics of Social Relationships in TensorFlow and Kuber-
netes

Time
Bucket Interaction Historical Interaction Historical Proportion
TensorFlow
3/22/2020-
4/30/2020

- - 21.61%

4/30/2020-
5/31/2020

- - 25.50%

5/31/2020-
6/30/2020

- - 29.71%
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Time
Bucket Interaction Historical Interaction Historical Proportion
6/30/2020-
7/31/2020

- - 49.89%

12/28/2020-
1/31/2021

- - 57.69%

1/31/2021-
2/28/2021

- - 62.06%

2/28/2021-
3/31/2021

- - 64.14%

Kubernetes
3/31/2021-
4/30/2021

- - 69.47%

4/30/2021-
5/31/2021

- - 67.60%

5/31/2021-
6/30/2021

- - 61.80%

The results show that in Kubernetes, historically interacted relationships ac-
count for 61.80% of monthly interactions on average, with similar patterns in
TensorFlow. This demonstrates that developers frequently collaborate with pre-
viously interacted partners in new issue discussions, and this proportion steadily
increases over time as collaboration networks expand. Incorporating historical
collaboration information thus improves recommendation performance.

2.2 Multi-Head Graph Attention Layer

The multi-head graph attention layer serves as GAT-UCG’s basic unit, with ar-
chitecture shown in Figure 2. Input is a set of node features {𝑝1, 𝑝2, 𝑝3, ..., 𝑝𝑁} ∈
ℝ𝐹×𝑁 , where 𝑁 is the number of nodes and 𝐹 is the feature dimension per node.
Each layer outputs new node features {𝑝′

1, 𝑝′
2, 𝑝′

3, ..., 𝑝′
𝑁} ∈ ℝ𝐹 ′×𝑁 . To transform

input features into high-order embeddings, we introduce self-attention mecha-
nisms in each layer, with calculations shown in Equations (1) and (2).

The attention layer’s output embedding is calculated as in Equation (3), where 𝜎
is a non-linear activation function, 𝐺 is the input graph, and 𝒩𝑖 represents node
𝑖’s first-order neighbors. To obtain stable self-attention results, we employ 𝐾
independent attention heads, concatenating their outputs. In the final layer, we
replace concatenation with averaging to reduce output dimensionality, as shown
in Equations (4) and (5), where ‖ denotes concatenation, 𝐾 is the number of
heads, 𝛼𝑘

𝑖𝑗 is the attention coefficient from head 𝑘, and 𝑊 𝑘 is the corresponding
linear transformation weight matrix. Multi-head attention distributes attention
across relevant features between center and neighbor nodes, enhancing model
capacity.
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2.3 Weight Propagation in Developer Collaboration Graph

The developer collaboration graph layer handles weight propagation between
developers. We define the collaboration graph as a weighted directed graph
𝒢𝐷 = (𝒱𝐷, ℰ𝐷, 𝑊), where 𝒱𝐷 represents the developer node set and ℰ𝐷 repre-
sents edges. An edge 𝑒𝑖𝑗 exists from developer 𝐷𝑖 to 𝐷𝑗 if 𝐷𝑖 has commented on
or referenced 𝐷𝑗’s issue or reply. We extract @mentions and comment references
using regular expressions to obtain collaboration relationships. The weight set
𝑊 reflects edge importance, learned through attention mechanisms, with 𝛼𝑖𝑗
representing the weight between 𝐷𝑖 and 𝐷𝑗. Developer node embeddings are
obtained via Multi-hot encoding of historical issue tags they participated in.
The output of the developer collaboration graph attention mechanism is shown
in Equation (6), where 𝑝𝐷𝑖

and 𝑝𝐷𝑗
are developer node embeddings and 𝒩𝐷𝑖

represents 𝐷𝑖’s first-order neighbors.

Figure 3 shows a partial example of the developer collaboration graph, where
edges exist between developers with collaboration relationships (e.g., 𝐷4 to 𝐷5
with weight 𝛼45).

2.4 Weight Propagation in Developer-Issue Participation Graph

We define the developer-issue participation graph as a bipartite graph 𝒢𝐼𝐷 =
(𝒱𝐼∪𝒱𝐷, ℰ𝐼𝐷, 𝑊), where 𝒱𝐼 is the issue set and 𝒱𝐷 is the developer set. Edge 𝑒𝑖𝑗
exists between issue node 𝐼𝑖 and developer node 𝐷𝑗 if developer 𝐷𝑗 commented
on issue 𝐼𝑖 at least once. The weight set 𝑊 reflects edge importance, learned
via attention mechanisms, with 𝛼𝑖𝑗 representing the weight between 𝐼𝑖 and 𝐷𝑗.
The output of the developer-issue participation graph attention mechanism is
shown in Equation (7), where 𝑝𝐼𝑖

and 𝑝𝐷𝑗
are issue and developer embeddings,

and 𝒩𝐼𝑖
represents issue node 𝐼𝑖’s first-order neighbors.

Figure 4 illustrates a partial developer-issue participation graph example,
showing edges between developers and issues they participated in (e.g.,
𝛼1𝐼1

, 𝛼2𝐼1
, 𝛼3𝐼1

).

2.5 Model Prediction and Optimization

To learn model parameters and better capture issue-developer features, we use
the LogSoftmax function for participant prediction, as shown in Equation (8),
where 𝑎𝑖 is the probability that issue node 𝐼 should be assigned to developer 𝐷𝑖.
This yields probabilities for assigning issue 𝐼 to each developer, enabling Top-N
recommendations based on sorted probabilities. LogSoftmax accelerates com-
putation and improves stability. Model parameters are updated using gradient
descent.
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3 Experiments
3.1 Issue and Comment Data

We selected two popular GitHub repositories (TensorFlow, Kubernetes) as ex-
perimental data. Using the GitHub API, we obtained issue information for
specific time periods, including issue tags and all participating users, collecting
7,352 issues and 58,814 comment actions. Dataset details are shown in Table 2.

Table 2. Datasets of TensorFlow and Kubernetes

Repository Issues Comments Developers
Label
Attributes

Time
Bucket

TensorFlow 2,459 13,067 - - 3/22/2020-
7/28/2020

Kubernetes 4,893 45,747 - - 12/28/2020-
7/30/2021

3.2 Evaluation Metrics

We evaluate algorithm performance using recall, precision, and F-Score. Recall
is calculated as in Equation (9), precision as in Equation (10), and F-Score as
in Equation (11), where Issue𝑠 is the test set, 𝑅𝑖 is the Top-N recommendation
list based on developer training behavior, and 𝑇𝑖 is the actual set of users who
participated in the issue.

3.3 Experimental Setup

Experiments were conducted using Python 3.8, PyTorch 1.9.0, CUDA 11.4, and
RTX 3090. The dataset was split into training, validation, and test sets at a
ratio of 8:1:1. GAT-UCG hyperparameters are shown in Table 3. Training ran
for 2,000 epochs with early stopping if validation metrics didn’t improve for 100
epochs. Baseline methods GAT and GCN used identical embedding dimensions,
learning rates, batch sizes, and attention heads, with other hyperparameters
matching their original papers. The goal was to recommend top-N developers
for each test issue, evaluated using Recall@N, Precision@N, and F-Score@N.

Table 3. Hyperparameter Settings

Hyperparameter Value
Issue/Developer Embedding Dimension 237 (TensorFlow) /

363 (Kubernetes)
Hidden Layers 2
Attention Heads 4
Dropout Rate 0.2
L2 Regularization 0.0005
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3.4 Ablation Study

To evaluate multi-head attention effectiveness, we compared single-head
vs. multi-head models. Since 99.79% of issues have $�$10 participants, we
limited recommendation lists to 10 and evaluated Top-N recall. Results in Table
4 show multi-head attention outperforms single-head by 8.57% average recall
improvement across both repositories, demonstrating that multi-head attention
stabilizes neighbor information propagation and enhances performance.

Table 4. Top-N Recommendation Recall with Different Attention
Heads

Attention Head TensorFlow Kubernetes
Multi-head 39.67%, 48.29%,

52.85%, 55.59%,
58.89%

45.01%, 56.16%,
61.18%, 64.05%,
66.04%

Single-head 27.66%, 39.07%,
44.43%, 46.82%,
51.78%

34.55%, 46.35%,
53.29%, 57.29%,
60.77%

3.5 Experimental Results

Based on the ablation study, we applied multi-head attention to GAT-UCG and
compared performance for Top-2, 4, 6, 8, 10 recommendations across methods.
Results are shown in Tables 5-7.

Table 5. Top-N Recommendation Recall

Method TensorFlow Kubernetes
GAT-UCG 39.67%, 48.29%, 52.85%,

55.59%, 58.89%
45.01%, 56.16%, 61.18%,
64.05%, 66.04%

GAT [26] 16.14%, 28.32%, 36.80%,
43.65%, 51.27%

28.70%, 39.59%, 45.27%,
49.10%, 51.27%

GCN [22] 11.63%, 20.68%, 28.28%,
33.36%, 37.27%

12.18%, 22.17%, 29.11%,
35.21%, 37.27%

SN [1] 22.69%, 26.10%, 28.93%,
30.54%, 31.39%

18.04%, 21.08%, 23.41%,
25.58%, 26.22%

MF [17] 5.11%, 14.82%, 21.45%,
24.82%, 25.52%

4.22%, 8.31%, 12.08%,
14.98%, 17.13%

Table 6. Top-N Recommendation Precision
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Method TensorFlow Kubernetes
GAT-UCG 39.80%, 24.22%, 17.62%,

13.94%, 11.42%
53.05%, 33.10%, 23.86%,
18.71%, 15.42%

GAT [26] 16.20%, 14.23%, 12.30%,
10.95%, 11.67%

33.30%, 22.97%, 17.51%,
14.24%, 11.90%

GCN [22] 10.37%, 9.45%, 8.36%,
7.57%, 8.93%

14.13%, 12.86%, 11.26%,
10.21%, 9.21%

SN [1] 12.84%, 12.56%, 10.78%,
9.90%, 8.61%

18.92%, 12.30%, 8.41%,
8.21%, 7.36%

MF [17] 7.31%, 13.59%, 14.34%,
13.13%, 11.67%

6.64%, 7.42%, 8.65%,
7.95%, 6.74%

Table 7. Top-N Recommendation F-Score

Method TensorFlow Kubernetes
GAT-UCG 39.73%, 32.26%, 26.43%,

22.30%, 19.02%
48.70%, 41.65%, 34.33%,
28.96%, 25.25%

GAT [26] 16.17%, 18.94%, 18.43%,
17.51%, 14.04%

30.82%, 29.25%, 25.25%,
22.08%, 19.32%

GCN [22] 11.64%, 13.81%, 14.16%,
13.36%, 12.26%

13.08%, 16.27%, 16.24%,
15.82%, 14.04%

SN [1] 23.96%, 18.28%, 14.75%,
12.13%, 10.22%

18.47%, 15.54%, 12.59%,
10.67%, 9.57%

MF [17] 5.62%, 8.26%, 9.59%,
9.92%, 8.03%

5.62%, 8.26%, 9.59%,
9.92%, 8.03%

3.6 Result Analysis

Visualized in Figures 6-8, results show GAT-UCG outperforms all four base-
lines on both repositories. In TensorFlow, recall improved by up to 39.61%; in
Kubernetes, by up to 54.61%.

Key observations: 1. GNN-based models generally outperform matrix factor-
ization and social network-based models, indicating GNNs effectively mine col-
laboration and preference features. 2. Among GNN models, integrating both
developer collaboration and developer-issue participation information yields bet-
ter performance than using only developer-issue participation. 3. GNN models
perform best on Kubernetes, which has more users, interactions, and label fea-
tures, suggesting richer graph content produces more informative embeddings
and better results. Performance gains are more pronounced on larger datasets.
4. The social network-based user profile model performs better than GAT for
Top-2 recommendations in TensorFlow due to more fixed participants and fewer
label types. However, from Top-4 onward, GAT-UCG surpasses it, demonstrat-
ing GNNs’better adaptability to complex scenarios.
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4 Conclusion
This paper proposes a graph attention network-based participant recommenda-
tion model for issue resolution, validated on popular GitHub repositories using
precision, recall, and F-Score. Experiments show GAT-UCG outperforms GAT,
GCN, SN, and MF baselines, effectively recommending participants by incorpo-
rating developer collaboration relationships.

Future work includes incorporating more issue features, as many issues lack
complete tags. Enhancing feature representation could further improve recom-
mendation performance.
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