ChinaRxiv [$X]

AT translation - View original & related papers at
chinarxiv.org/items/chinaxiv-202204.00047

An Improved Cuckoo Search Algorithm for the
Dual Resource Constrained Flexible Job Shop
Scheduling Problem (postprint)

Authors: Luo Haojia, Pan Dazhi
Date: 2022-04-07T15:01:57+00:00

Abstract

For the Dual-Resource Constrained Flexible Job Shop Scheduling Problem (DR-
CFJSP), a Cuckoo Algorithm with an improved decoding scheme is proposed to
optimize the makespan. Since DRCFJSP requires consideration of both machine
allocation and worker processing status, the traditional decoding method is im-
proved to avoid conflicts between machine and worker processing times, while
simultaneously utilizing the idle time of machines and workers during decoding.
Under the core framework of the Cuckoo Algorithm, the cuckoo population is
randomly divided into three subgroups, each of which independently conducts
optimization using different Lévy flight strategies, and information exchange
among subgroups is realized through a differential operator, thereby enhancing
the global search capability of the algorithm and balancing its local search ca-
pability. Finally, experimental simulations are conducted through benchmark
test cases and compared with other algorithms, which verifies the effectiveness
and superiority of the improved Cuckoo Algorithm and the improved decoding
method.

Full Text

Preamble

Vol. 39 No. 8
Application Research of Computers
ChinaXiv Cooperative Journal

Improved Cuckoo Algorithm for Flexible Job Shop Scheduling with
Dual Resource Constraints

Luo Haojia , Pan Dazhi, }
(a. School of Mathematics & Information; b. Institute of Computing Methods

chinarxiv.org/items/chinaxiv-202204.00047 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00047
https://chinarxiv.org/items/chinaxiv-202204.00047

ChinaRxiv [$X]

& Applications, China West Normal University, Nanchong, Sichuan 637009,
China)

Abstract: This paper addresses the flexible job shop scheduling problem with
dual resource constraints (DRCFJSP) and designs a cuckoo algorithm with an
improved decoding scheme to minimize the maximum completion time. Since
DRCFJSP requires consideration of both machine allocation and worker pro-
cessing conditions, we improve the traditional decoding method to avoid con-
flicts in processing time between machines and workers while maximizing the
utilization of idle time for both resources. Within the core framework of the
cuckoo algorithm, the population is randomly divided into three subpopulations,
each employing different Lévy flight strategies for independent optimization. In-
formation exchange between subpopulations is achieved through a differential
operator, which enhances global search capability while balancing local search
ability. Experimental simulations using benchmark test cases and comparisons
with other algorithms verify the effectiveness and superiority of the improved
cuckoo algorithm and decoding method.

Keywords: flexible job shop scheduling; dual resource constraints; cuckoo al-
gorithm; improved decoding method

0 Introduction

Scheduling plays a vital role in manufacturing and service industries. As a
typical scheduling problem, the job shop scheduling problem has received ex-
tensive attention in the field of manufacturing systems. Recent years have wit-
nessed numerous extended studies based on job shop scheduling, including fuzzy
processing time scheduling [1,2], blocking problems [3~5], and multi-objective
scheduling [6,7], all representing practical applications. The Dual Resource
Constrained Flexible Job Shop Scheduling Problem (DRCFJSP) extends the
Flexible Job Shop Scheduling Problem (FJSP) by adding worker constraints,
requiring simultaneous consideration of worker and machine processing condi-
tions. Consequently, DRCFJSP more closely reflects real production scenarios.

In recent years, several metaheuristic algorithms have been applied to DR-
CFJSP. Li et al. [8] proposed a branch-population genetic algorithm featuring
a roulette wheel selection operator based on sector segmentation and an elite
evolutionary operator, which effectively reduced computational complexity and
avoided premature convergence. Zhang et al. [9] introduced a novel hybrid
discrete particle swarm optimization algorithm for dual-resource constrained
job shop scheduling with resource flexibility, incorporating an improved sim-
ulated annealing algorithm with variable neighborhood structure to enhance
local search capability. Lei et al. [10] developed an effective variable neighbor-
hood search that sequentially executed two neighborhood search procedures to
generate new solutions for two subproblems, thereby strengthening the algo-
rithm’ s search ability. Zheng et al. [11] presented a knowledge-guided fruit

chinarxiv.org/items/chinaxiv-202204.00047 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00047

ChinaRxiv [$X]

fly optimization algorithm with a new encoding scheme for DRCFJSP to mini-
mize makespan, combining knowledge-guided search and smell-based search to
balance global exploration and local exploitation.

The Cuckoo Search (CS) algorithm [12], proposed by Cambridge scholars Yang
and Deb in 2009, simulates the brood parasitism behavior of cuckoos. Due to its
minimal parameter requirements and strong global search capabilities, CS has
been widely applied to continuous optimization, scheduling, and engineering op-
timization problems. Ouaar et al. [13] discretized the cuckoo algorithm without
changing its framework to solve job shop scheduling problems. ALAA et al. [14]
improved the Lévy flight in CS to intensify search around the population’ s
best individuals and applied it to flexible job shop scheduling. Majumdera et
al. [15] proposed a Hybrid Discrete Cuckoo Search (HDCS) algorithm for paral-
lel batch processing machines with unequal job ready times, combining CS with
variable neighborhood search and improving the Lévy flight mechanism. Tang et
al. [16] established a distributed flexible job shop scheduling model minimizing
maximum completion time under realistic production conditions, improving CS
encoding and initialization strategies to enhance initial solution quality while
modifying search operations to accelerate convergence without compromising
solution quality. Luo et al. [17] discretized the cuckoo algorithm and improved
its decoding method for hybrid flow shop scheduling problems.

Current research on DRCFJSP remains limited, yet worker collaboration is in-
dispensable in most factory operations. Therefore, this paper adds worker con-
straints to the FJSP problem, modeling workers operating machines to process
jobs. We incorporate worker information into the encoding scheme and divide
the population into three subpopulations with adaptive step size adjustment
to improve population diversity. Additionally, we improve the decoding algo-
rithm by integrating worker information and fully utilizing idle time to reduce
final completion time. Simulation experiments using standard benchmark test
sets and comparisons with other algorithms demonstrate the effectiveness and
stability of the improved CS algorithm for DRCFJSP.

1 Dual Resource Constrained Flexible Job Shop Scheduling
Model

The Dual Resource Constrained Flexible Job Shop Scheduling Problem (DR-
CFJSP) is described as follows: There are n jobs {J;, Js, ..., J,, } to be processed
on m machines {M;, My, ..., M, }. Each job J; (i = 1,2,...,n) has n, operations
0,1,0;9,..,0;,, . The processing time for each operation depends on both
machine and worker assignments, with different combinations yielding different
processing times.

The scheduling objective is to determine the processing sequence of all jobs
and assign workers and machines to each operation to minimize the makespan

chinarxiv.org/items/chinaxiv-202204.00047 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00047

ChinaRxiv [$X]

(maximum completion time). Symbol definitions for DRCFJSP are provided in
Table 1.

Table 1 Symbol Variable Definition

Symbol Definition

W Total set of workers

M Total set of machines

J Total set of jobs

0, ; The j-th operation of job J,

SE; ; Earliest start time of operation O, ;

CE, ; Earliest completion time of operation O, ;
SL; ; Latest start time of operation O, ;

CL,; Latest completion time of operation O, ;
Sk Start processing time of machine M,

F, End processing time of machine M,

PW, Preceding operation processed by the same

worker v; if O, ; is the first operation, then
PW,=10

SW, Succeeding operation processed by the same
worker v; if O, ; is the last operation, then
SW, =10

T keow Processing time of operation O, ; on machine
M;, by worker w

L A sufficiently large positive number

Decision variables are defined as follows:

1 if operation O, ; is processed on machine M, by worker w
€T.: . k = . ’
Bt 0 otherwise

1 if operations O j, and O, ; are both processed on machine M
Yghyigk — and O,), precedes O, ;
0 otherwise

1 if operations O, j, and O, ; are both processed by worker w
Zghijw = and O ;, precedes O ;

0 otherwise

Constraints:

chinarxiv.org/items/chinaxiv-202204.00047 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00047

ChinaRxiv [$X]

Equation (1) ensures each operation is processed by exactly one worker on one

machine:
o> wipw=1 VieJVjel
keM weW

Equation (2) defines the earliest completion time:

CE, ;= SE, ; + Z Z T, ikwTijkw VIiEJS,ViET
keM weW

Equation (3) defines the latest completion time:

CL,;=SL; ;+ Z Z T, kaoTijour Vi€ J Vi€,
keM weW

Equation (4) enforces precedence constraints for operations within the same job:

CE;;—SE; ;.1 <0, YieJVjeJ,—{1,2,..,n;,—1}

Equation (5) ensures each machine processes at most one operation at any time:

CEy,—SE; AL~y p,50) > O TijhwTijhw Vi€ J,YhE Vi€ J,VhkeM
weW

Equation (6) ensures each worker processes at most one operation at any time:

CEy,—SE;, +L(0~z2y 4, 50) = > Ty jkwTijhe V91 €JVhE T Vi€ T, YweW
keM

Equation (7) states all machines become available starting from time 0:

S, >0, VkeM

Equation (8) ensures a machine must be idle when processing an operation:

Sy —=SE; ;+L(1 =, 1.,) >0, VieJ VjeJ,Vhke M,YweW

Equation (9) states machines cannot stop until processing is completed:

Cijknwo Tijow < F, Vi€ J,Vje J,Vke M,YweW

Equation (10) calculates the earliest start time of an operation:

SE; ; = max(CE, ;_1,8,,SW,), Vie J,Vje J,Vke M,YweW

Equation (11) calculates the latest completion time of an operation:

CL; ; = max(SL,

3,j—19

EM,, EW,), Vi€ JVjeJ,Vke M NYweW

chinarxiv.org/items/chinaxiv-202204.00047 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00047

ChinaRxiv [$X]

Table 2 presents a DRCFJSP instance consisting of three jobs, three machines,
and two workers. The table shows the processing time required for each op-
eration on a given machine by a specific worker, where “” indicates that the
corresponding worker cannot operate that machine for the operation. For ex-
ample, operation O; ; cannot be processed by worker W, on machine M, but
can be processed by worker Wy on M, with a processing time of 1.

2.1 Cuckoo Algorithm

The cuckoo algorithm is a novel heuristic search algorithm based on two update
strategies: (1) searching for host nests through Lévy flight mechanisms, and (2)
replacing discovered nests through preference-based random walk. In the cuckoo
algorithm, each nest represents a feasible solution. Under ideal conditions, the
position update formula for a cuckoo is:

XfH = X!+ a®Lévy(B)

where X! represents the position of the i-th nest at generation ¢, « is the step
size scaling factor, and @ denotes point-to-point multiplication. The random
search path Lévy(8) follows a Lévy distribution.

For computational convenience, literature [12] uses Equation (13) to generate
Lévy random numbers:

X p

Lévy(B) = PIE

where p and v follow standard normal distributions, and ¢ is calculated as:

[TA+pB) xsin(xp/2) |7’
= <r<<1 T5)/2) % B x 2<ﬁl>/2)

The parameter [is typically set to 1.5. Combining these formulas yields the
cuckoo position update equation:

X =Xttaxoxpx (Xt —Xt .,

After discarding partial solutions with discovery probability P,, preference-
based random walk generates an equal number of new solutions:

X[t = X oy x (X — XD)

chinarxiv.org/items/chinaxiv-202204.00047 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00047

ChinaRxiv [$X]

where 7 is a scaling factor following a uniform distribution, and X, X%, rep-
resent two randomly selected nests from generation t.

2.2 Algorithm Encoding

Since the standard cuckoo algorithm solves continuous optimization problems,
it cannot be directly applied to job shop scheduling. This paper introduces the
Smallest Position Value (SPV) rule to establish a mapping between individuals
and actual schedules. As shown in Figure 1, SPV sorts the original vector in
ascending order to obtain a new vector; the positions of components in the
original vector corresponding to the sorted sequence form the integer encoding
sequence.

During encoding, we first randomly generate an Operation Sequence (OS), then
allocate machines and workers based on this sequence. The complete encoding
comprises three layers: the first layer is the Operation Sequence (OS), the sec-
ond is the Machine Assignment sequence (MA), and the third is the Worker
Assignment sequence (WA). This encoding, derived from the Table 1 instance,
represents a schedule where three jobs are processed by two workers on three
machines. Job 1 contains 2 operations, Job 2 contains 2 operations, and Job
3 contains 3 operations, with the processing order: Oy, — Oy5 — O3, —
O35 — O35 = Oy — O; 5. From the complete sequence, operation O ; is
processed by worker 2 on machine 3, operation O, ; by worker 2 on machine
3, and operation Os, by worker 1 on machine 2, with remaining operations
following similarly.

2.3 Improved Decoding Algorithm

Unlike single-resource constrained FJSP, DRCFJSP is constrained not only by
the completion time of preceding operations and the earliest available machine
time but also by the earliest available worker time. This paper improves the
insertion-based decoding scheme to enable proactive decoding for both machines
and workers simultaneously. The core idea is to effectively utilize idle time
generated during machine and worker processing by proactively scheduling them
into appropriate idle intervals, thereby reducing overall makespan.

Let ST, ; denote the start time of operation O, ;, ET; ; its completion time,
ET, ;_, the completion time of its immediate predecessor, s, the start time of
machine My, and T ;, ,, the processing time required for operation O, ; on
machine M, by worker w. During decoding, we must first check the availability
of the selected machine and worker, then determine whether idle time exists and
satisfies insertion conditions. When both machine and worker have idle time,
three possible scenarios may occur:

chinarxiv.org/items/chinaxiv-202204.00047 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00047

ChinaRxiv [$X]

Case 1: As shown in Figure 2, the idle times of machine and worker do not
overlap, making insertion impossible.

Case 2: As shown in Figure 3, while machine and worker have overlapping idle
intervals, the overlapping duration T, is less than the required processing time
T; j kwe Preventing insertion.

Case 3: As shown in Figure 4, machine and worker have overlapping idle
intervals with duration 7, > T; ; ; ., allowing insertion.

Based on all possible decoding scenarios, Algorithm 1 presents the pseudocode
for the improved decoding method.

Algorithm 1: Pseudocode for Improved Decoding Method

Input: Total number of operations T'P, machine and worker processing capa-
bility information

Output: Operation start times ST; ; and completion times ET; ;, machine pro-

cessing timeline [SM,,, EM,], worker processing timeline [SW,, EW.]
1. For each operation O, ; (where tp =1 to T'P):

2. Initialize insertion flag: flag =0

3. Obtain available machines and workers k,w and processing time 7} ; ;. ,

4. Retrieve machine timeline [SM,,, EM,] and worker timeline [SW,, EW,],
along with corresponding idle intervals [ASM,, AEM, | and [ASW,, AEW]

5. If j =1 (first operation of job):

If both machine and worker have not started processing:
Set $3T_{i,j} = \max(ASM_k, ASW_s)$
$ET_{i,j} = ST_{i,j} + T_{i,j,k,w}$

1$

© »® N >

Set $flag
10. Else:

11. Check insertion conditions for idle intervals

12. If machine and worker both have idle time:

13. For each idle interval:
14. If overlapping duration $T_a \geq T_{i,j,k,w}$:
15. Set $ST_{i,j} = \max(ASM_k, ASW_s)$

chinarxiv.org/items/chinaxiv-202204.00047 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00047

16.
17.
18.

19.

20.

21.

22.
23.
24.
25.
26.
27.

28.
29.

30.
31.

32.

33.

34.

35.

$ET_{i,j} = ST_{i,j} + T_{i,j,k,w}$
Set $flag = 1$; break

End If

Else:

ET; ;_; = completion time of preceding operation

If machine has idle time but worker does not:

Check insertion conditions

If $ET_{i,j-1} \leq AEM_k$ and $T_a \geq T_{i,j,k,w}$:
Set $ST_{i,j} = \max(ET_{i,j-1}, ASM_Kk)$
$ET_{i,jr = ST_{i,j} + T_{i,j,.k,w}$
Set $flag = 1%

Else If worker has idle time but machine does not:

Similar checking process

Else If both have idle time:

Check overlapping intervals for insertion feasibility

If flag = 0 (no insertion possible):

Set ST; ; = max(ET; ;_1, EM,, EW,)

i,j—19

Jkw

Update operation’s earliest completion time and machine/worker timelines

End For

2.4.1 Improved Lévy Flight

In standard cuckoo search, longer Lévy flight steps yield lower search precision
suitable for global exploration, while shorter steps provide higher precision and

chinarxiv.org/items/chinaxiv-202204.00047 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00047

ChinaRxiv [$X]

stronger local search capability. Since the standard Lévy flight uses a fixed step
size factor lacking adaptivity, it may result in slow search speed and suscep-
tibility to local optima. To address this, we employ two methods to improve
the step size factor by randomly dividing the cuckoo population into three sub-
populations. Each subpopulation independently updates using either fixed-step
Lévy flight or two improved adaptive-step Lévy flight strategies. The step size
factor automatically adjusts based on the population’s search status at different
stages, balancing global optimization speed and search precision.

The first improvement method, shown in Equation (18), adaptively adjusts the
step size factor « based on the current nest’ s position relative to the global
best nest, enabling more refined search near the optimal solution to help locate
the global optimum:

a =g X |Xf - Xlt)est|
where o is typically set to 0.01, X! represents the position of the i-th nest at
generation ¢, and X! __ is the current global best nest position.

The second improvement method, shown in Equation (19), adopts the approach
from literature [18] and controls the step size factor a through algorithm itera-
tion count. During early iterations, « is large, providing extensive search range
and reducing the risk of local optima. In later stages, o adaptively decreases,
improving search precision for better optimal solution identification:

t
Q= Qo X COS < ><fy>

max

where t is the current iteration number, ¢ is the total iteration count, and

) Ymax

is a random step factor in [0.05,0.05].

2.4.2 Information Exchange

Since the three subpopulations conduct optimization independently, informa-
tion exchange between them every k generations helps improve efficiency and
maintain population diversity. The exchange principle involves communicating
suboptimal individuals with the best individuals to guide weaker individuals to-
ward the global optimum. We introduce the DE/best/1 mutation strategy from
differential evolution algorithms for subpopulation differentiation, calculated as:

‘/i7g = Xbest7g + F % (XTLg - XTQ,g)

X

where X, , represents the current global best individual, and X 2.9

denote two relatively inferior individuals in subpopulation g.

rl,g’

chinarxiv.org/items/chinaxiv-202204.00047 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00047

ChinaRxiv [$X]

The improved cuckoo algorithm is presented in Algorithm 2.
Algorithm 2: Pseudocode for Improved Cuckoo Algorithm

Input: Iteration count iter, number of nests n, maximum iterations iter
discovery probability P,
Output: Current best nest information

max?

1. For iter =1 to iter, . :

2. For each subpopulation (1 to 3):

Update subpopulation using Equations (12), (18), and (19)
Each subpopulation updates via Lévy flight with different step factors

Evaluate nests and discard inferior ones with probability P_a, generating new nests 1

End For

S oo W

7. Evaluate current generation and update global best nest

8. If iter mod k = 0:

9. Apply differential operator (Equation 20) for subpopulation information exchange

10. Decode using improved decoding algorithm and update global best

11. End For

2.5 Algorithm Flow

Step 1: Initialize parameters: cuckoo population size n, maximum iterations
iter discovery probability P, .

max’

Step 2: Initialize population. Convert nest information into feasible scheduling
sequences using mapping rules. Apply improved decoding to obtain makespan,
retain the current best nest, and randomly divide the population into 3 subpop-
ulations.

Step 3: Update each subpopulation using standard Lévy flight and two im-
proved Lévy flight formulas. Decode to obtain makespan and update the cur-
rent best nest. Perform preference-based random walk via Equation (17) to
eliminate poor solutions and generate equal numbers of new solutions.

chinarxiv.org/items/chinaxiv-202204.00047 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00047

ChinaRxiv [$X]

Step 4: Every k iterations, introduce the differential operator for information
exchange among the three subpopulations. Decode using the improved decoding
algorithm and update the current best nest.

Step 5: Output the global optimal solution when maximum iterations are
reached; otherwise, return to Step 3.

3.1 Experimental Environment and Test Instances

This study employs Matlab R2018a programming on an Intel(R) Xeon(R) CPU
E5-@3.30GHz with 8GB RAM. Given limited research on DRCFJSP and the
lack of standard benchmarks for comparative evaluation, we select the MK1-
MK10 instances from the Brandimarte [19] benchmark set to test algorithm
performance. Worker allocation follows the simulation method from literature
[11], with specific worker-machine assignments detailed in Table 3.

Table 3 Worker and Machine Allocation

Instance Allocation

MK1‘2 {M17M37M5}7{M27M43M5}

MK3-4 {M17M27M4}7{M37M5}

MK®6,10 {My, My, M,, Mg}, { M, My, My}
MK7,11 {M27M37M4}7{M1’M57M67M7}
MK879712713 {M17M57M6’M77M8}7{M67M5’M8}
MK5 {M17M37M4aM5}a{M23M4}

MK14 {M,, My, M5}, {My, M,}

3.2 Results and Analysis

Since algorithm parameters significantly impact performance and runtime, we
employ the orthogonal experimental method from literature [20] for parameter
tuning. Figure 5 shows the average trend over 10 runs of our algorithm solving
MKO1 under different parameter settings.

Figure 5(a) illustrates the impact of maximum iterations iter, .. Small iter-
ation limits may force premature termination before convergence, degrading
solution quality. As iterations increase, solution quality improves, but beyond a
certain point, further increases do not significantly improve optimal solution fre-
quency while raising computational complexity. Therefore, we set iter, ,, = 200
to ensure efficiency. Figure 5(b) shows that a population size around 50 yields
excellent solutions, so we set n = 50. Figure 5(c) displays the effect of discovery
probability P, with optimal solutions obtained around P, = 0.25. Larger values
gradually degrade solution quality, leading to our final setting of P, = 0.25.

chinarxiv.org/items/chinaxiv-202204.00047 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00047

ChinaRxiv [$X]

To validate our algorithm’ s effectiveness, we compare it with alternative al-
gorithms. Each instance runs 20 consecutive times, with results recorded and
analyzed in Table 4. Here, VNS [10], KGFOA [11], and M BSA [21] repre-
sent optimal values from literature for DRCFJSP; ICS denotes the improved
cuckoo algorithm with standard decoding; C'S N D represents standard cuckoo al-
gorithm with improved decoding; and IC'SN D is our proposed improved cuckoo
algorithm with improved decoding.

Table 4 reveals that with only algorithmic improvements, good results are eas-
ily obtained for small-scale problems. However, as problem scale increases,
idle times for machines and workers grow, and standard decoding cannot ef-
fectively utilize these intervals, making algorithmic improvements alone insuffi-
cient. C'SN D benefits from cuckoo algorithm’s inherent superiority in balancing
global and local search, with improved decoding further reducing makespan and
enhancing efficiency. Our ICSND not only improves the cuckoo algorithm
to strengthen search capability but also adjusts decoding to effectively utilize
idle time, substantially shortening makespan. Compared with other algorithms,
ICSND consistently produces superior solutions across most instances.

Figures 6 and 7 present Gantt charts for MK1 and MK2 solutions obtained
by our algorithm, where the x-axis represents processing time, y-axis shows
machines, and each box contains job number and worker number.

To better evaluate performance, we introduce the Mean Relative Percentage De-
viation (M RPD) and Average Relative Percentage Deviation (ARPD) metrics
from literature [10]:

Cbest _ (ow
MRPD = W x 100

max

1y~ Gt~ Cla
ARPD:E;WXIOO

where CPet is each algorithm’ s best solution and C9% is our algorithm’ s best

solution.

Table 5 demonstrates that algorithms with improved decoding outperform stan-
dard decoding versions. IC'SN D surpasses C'SN D in both solution quality and
best solution attainment, while the improved cuckoo algorithm overall outper-
forms standard CS, exhibiting stronger search capability. Table 6 compares
ICSND with three other algorithms, showing ICSN D achieves minimum per-
centage deviation of 0 for all instances with smaller average deviations, indicat-
ing more stable and higher-quality solutions. Other algorithms generally exhibit
poorer solution quality and larger average deviations. Thus, ICSND demon-
strates superior solving capability, stability, and solution quality for DRCFJSP.

chinarxiv.org/items/chinaxiv-202204.00047 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00047

ChinaRxiv [$X]

4 Conclusion

This paper improves the cuckoo algorithm while maintaining its core framework
by dividing the population into three subpopulations with different Lévy flight
strategies and introducing a differential operator for inter-subpopulation infor-
mation exchange, significantly enhancing search capability. An improved decod-
ing scheme is designed to avoid processing time conflicts between machines and
workers while proactively identifying insertable idle intervals, substantially re-
ducing overall makespan. Benchmark testing and comparative analysis validate
the effectiveness and stability of the improved cuckoo algorithm and decoding
method. Future research will incorporate dynamic production factors such as
machine failures, maintenance, urgent order insertion, and order cancellation.

References

[1] Chen Kejia, Duan Ruiming, Liu Biyu, et al. A multi-objective model for fuzzy
replacement flow shop scheduling [J]. Operations Research and Management,
2021, 30 (08): 28-36.

[2] Lin J. Backtracking search based hyper-heuristic for the flexible job-shop
scheduling problem with fuzzy processing time [J]. Engineering Applications of
Artificial Intelligence, 2019, 77: 186-196.

[3] Xuan Hua, Wang Jing, Li Bing, et al. Research on optimal scheduling of
blocked mixed flow shop [J]. Control Engineering, 2020, 27 (08): 1346-1350.

[4] Shao Z, Shao W, Pi D. Effective constructive heuristic and iterated greedy
algorithm for distributed mixed blocking permutation flow-shop scheduling prob-
lem [J]. Knowledge-Based Systems, 2021, 221 (5): 107960.

[6] Xuan Hua, Wang Jing, Zhang Huixian, et al. Hybrid Genetic Algorithm for
HFSP with Machine Availability Constraints [J]. Computer Applications and
Software, 2021, 38 (06): 176-181.

[6] Zhang Hongliang, Ding Renman, Xu Gongjie. Multi-objective Flexible
Job Shop Energy Saving Scheduling Considering Interval Working Hours
[J/OL]. Journal of System Simulation: 1-13 (2021-08-17) [2021-09-10].
https://doi.org/10.16182/j.issn1004731x.joss.21-0395.

[7] Wang H, Sheng B, Lu Q, et al. A novel multi-objective optimization algo-
rithm for the integrated scheduling of flexible job shops considering preventive
maintenance activities and transportation processes [J]. Soft Computing, 2021,
25 (4): 1-27.

[8] Li J, Yuan H. A Hybrid Genetic Algorithm for Dual-Resource Constrained
Job Shop Scheduling Problem [J]. Computers & Industrial Engineering, 2016,
102: 113-131.

chinarxiv.org/items/chinaxiv-202204.00047 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00047

ChinaRxiv [$X]

[9] Jing Z, Wang W, Xu X. A hybrid discrete particle swarm optimization for
dual-resource constrained job shop scheduling with resource flexibility [J]. Jour-
nal of Intelligent Manufacturing, 2017, 28 (8): 1961-1972.

[10] Lei D, Guo X. Variable neighbourhood search for dual-resource constrained
flexible job shop scheduling [J]. International Journal of Production Research,
2014, 52 (9): 2519-2529.

[11] Zheng X L, Wang L. A knowledge-guided fruit fly optimization algorithm for
dual resource constrained flexible job-shop scheduling problem [J]. International
Journal of Production Research, 2016, 54 (18): 5450-5465.

[12] Yang X S, DEB S. Cuckoo search via Lévy flight [C]// Proceedings of
World Congress on Nature & Biologically Inspired Computing. India: IEEE
Publications, 2009: 210-214.

[13] Ouaarab A, Ahiod B, Yang X S. Discrete Cuckoo Search Applied to Job
Shop Scheduling Problem [M]. Recent Advances in Swarm Intelligence and Evo-
lutionary Computation. Springer International Publishing, 2015: 121-137.

[14] Alaa S, Alobaidi A. Two Improved Cuckoo Search Algorithms for Solving
The Flexible Job-Shop Scheduling Problem [J]. International Journal on Per-
ceptive and Cognitive Computing, 2016, 2 (2): 25-31.

[15] Majumdera A, Lahaa D, Suganthan P N. A hybrid cuckoo search algo-
rithm in parallel batch processing machines with unequal job ready times [J].
Computers & Industrial Engineering, 2018, 124: 65-76.

[16] Tang Hongtao, Liu Jiayi. Improved Cuckoo Algorithm for Distributed
Flexible Flow Shop Scheduling Problem Considering Transportation Time [J].
Operations Research and Management, 2021, 30 (11): 76-83.

[17] Luo Hanming, Luo Tianhong, Wu Xiaodong, et al. Discrete Cuckoo Algo-
rithm for Solving Hybrid Flow Shop Scheduling Problem [J]. Computer Engi-
neering and Applications, 2020, 56 (22): 264-271.

[18] Shi Wenzhang, Han Wei, Dai Ruiwen. Cuckoo algorithm under simulated
annealing to solve job shop scheduling problems [J]. Computer Engineering and
Applications, 2017, 53 (17): 249-253, 259.

[19] Brandimarte P. Routing and scheduling in a flexible job shop by tabu search
[J]. Annals of Operations research, 1993, 41 (3): 157-183.

[20] Wang Wenyan, Xu Zhenhao, Gu Xingsheng. Discrete water wave optimiza-
tion algorithm for batch flow scheduling problem in mixed flow workshop with
batch processing [J]. Journal of East China University of Science and Technol-
ogy: Natural Science, 2021, 47 (05): 598-608.

[21] Gnanavelbabu A, Caldeira R H, Vaidyanathan T. A simulation-based mod-
ified backtracking search algorithm for multi-objective stochastic flexible job
shop scheduling problem with worker flexibility [J]. Applied Soft Computing,
2021, 2021 (113): 107960.

chinarxiv.org/items/chinaxiv-202204.00047 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00047

ChinaRxiv [$X]

Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv —Machine translation. Verify with original.

chinarxiv.org/items/chinaxiv-202204.00047 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00047

	An Improved Cuckoo Search Algorithm for the Dual Resource Constrained Flexible Job Shop Scheduling Problem (postprint)
	Abstract
	Full Text
	Preamble
	Improved Cuckoo Algorithm for Flexible Job Shop Scheduling with Dual Resource Constraints

	0 Introduction
	1 Dual Resource Constrained Flexible Job Shop Scheduling Model
	2.1 Cuckoo Algorithm
	2.2 Algorithm Encoding
	2.3 Improved Decoding Algorithm
	2.4.1 Improved Lévy Flight
	2.4.2 Information Exchange
	2.5 Algorithm Flow
	3.1 Experimental Environment and Test Instances
	3.2 Results and Analysis
	4 Conclusion
	References

