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Abstract
For the Dual-Resource Constrained Flexible Job Shop Scheduling Problem (DR-
CFJSP), a Cuckoo Algorithm with an improved decoding scheme is proposed to
optimize the makespan. Since DRCFJSP requires consideration of both machine
allocation and worker processing status, the traditional decoding method is im-
proved to avoid conflicts between machine and worker processing times, while
simultaneously utilizing the idle time of machines and workers during decoding.
Under the core framework of the Cuckoo Algorithm, the cuckoo population is
randomly divided into three subgroups, each of which independently conducts
optimization using different Lévy flight strategies, and information exchange
among subgroups is realized through a differential operator, thereby enhancing
the global search capability of the algorithm and balancing its local search ca-
pability. Finally, experimental simulations are conducted through benchmark
test cases and compared with other algorithms, which verifies the effectiveness
and superiority of the improved Cuckoo Algorithm and the improved decoding
method.
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Abstract: This paper addresses the flexible job shop scheduling problem with
dual resource constraints (DRCFJSP) and designs a cuckoo algorithm with an
improved decoding scheme to minimize the maximum completion time. Since
DRCFJSP requires consideration of both machine allocation and worker pro-
cessing conditions, we improve the traditional decoding method to avoid con-
flicts in processing time between machines and workers while maximizing the
utilization of idle time for both resources. Within the core framework of the
cuckoo algorithm, the population is randomly divided into three subpopulations,
each employing different Lévy flight strategies for independent optimization. In-
formation exchange between subpopulations is achieved through a differential
operator, which enhances global search capability while balancing local search
ability. Experimental simulations using benchmark test cases and comparisons
with other algorithms verify the effectiveness and superiority of the improved
cuckoo algorithm and decoding method.

Keywords: flexible job shop scheduling; dual resource constraints; cuckoo al-
gorithm; improved decoding method

0 Introduction
Scheduling plays a vital role in manufacturing and service industries. As a
typical scheduling problem, the job shop scheduling problem has received ex-
tensive attention in the field of manufacturing systems. Recent years have wit-
nessed numerous extended studies based on job shop scheduling, including fuzzy
processing time scheduling [1,2], blocking problems [3~5], and multi-objective
scheduling [6,7], all representing practical applications. The Dual Resource
Constrained Flexible Job Shop Scheduling Problem (DRCFJSP) extends the
Flexible Job Shop Scheduling Problem (FJSP) by adding worker constraints,
requiring simultaneous consideration of worker and machine processing condi-
tions. Consequently, DRCFJSP more closely reflects real production scenarios.

In recent years, several metaheuristic algorithms have been applied to DR-
CFJSP. Li et al. [8] proposed a branch-population genetic algorithm featuring
a roulette wheel selection operator based on sector segmentation and an elite
evolutionary operator, which effectively reduced computational complexity and
avoided premature convergence. Zhang et al. [9] introduced a novel hybrid
discrete particle swarm optimization algorithm for dual-resource constrained
job shop scheduling with resource flexibility, incorporating an improved sim-
ulated annealing algorithm with variable neighborhood structure to enhance
local search capability. Lei et al. [10] developed an effective variable neighbor-
hood search that sequentially executed two neighborhood search procedures to
generate new solutions for two subproblems, thereby strengthening the algo-
rithm’s search ability. Zheng et al. [11] presented a knowledge-guided fruit
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fly optimization algorithm with a new encoding scheme for DRCFJSP to mini-
mize makespan, combining knowledge-guided search and smell-based search to
balance global exploration and local exploitation.

The Cuckoo Search (CS) algorithm [12], proposed by Cambridge scholars Yang
and Deb in 2009, simulates the brood parasitism behavior of cuckoos. Due to its
minimal parameter requirements and strong global search capabilities, CS has
been widely applied to continuous optimization, scheduling, and engineering op-
timization problems. Ouaar et al. [13] discretized the cuckoo algorithm without
changing its framework to solve job shop scheduling problems. ALAA et al. [14]
improved the Lévy flight in CS to intensify search around the population’s
best individuals and applied it to flexible job shop scheduling. Majumdera et
al. [15] proposed a Hybrid Discrete Cuckoo Search (HDCS) algorithm for paral-
lel batch processing machines with unequal job ready times, combining CS with
variable neighborhood search and improving the Lévy flight mechanism. Tang et
al. [16] established a distributed flexible job shop scheduling model minimizing
maximum completion time under realistic production conditions, improving CS
encoding and initialization strategies to enhance initial solution quality while
modifying search operations to accelerate convergence without compromising
solution quality. Luo et al. [17] discretized the cuckoo algorithm and improved
its decoding method for hybrid flow shop scheduling problems.

Current research on DRCFJSP remains limited, yet worker collaboration is in-
dispensable in most factory operations. Therefore, this paper adds worker con-
straints to the FJSP problem, modeling workers operating machines to process
jobs. We incorporate worker information into the encoding scheme and divide
the population into three subpopulations with adaptive step size adjustment
to improve population diversity. Additionally, we improve the decoding algo-
rithm by integrating worker information and fully utilizing idle time to reduce
final completion time. Simulation experiments using standard benchmark test
sets and comparisons with other algorithms demonstrate the effectiveness and
stability of the improved CS algorithm for DRCFJSP.

1 Dual Resource Constrained Flexible Job Shop Scheduling
Model
The Dual Resource Constrained Flexible Job Shop Scheduling Problem (DR-
CFJSP) is described as follows: There are 𝑛 jobs {𝐽1, 𝐽2, ..., 𝐽𝑛} to be processed
on 𝑚 machines {𝑀1, 𝑀2, ..., 𝑀𝑚}. Each job 𝐽𝑖 (𝑖 = 1, 2, ..., 𝑛) has 𝑛𝑖 operations
𝑂𝑖,1, 𝑂𝑖,2, ..., 𝑂𝑖,𝑛𝑖

. The processing time for each operation depends on both
machine and worker assignments, with different combinations yielding different
processing times.

The scheduling objective is to determine the processing sequence of all jobs
and assign workers and machines to each operation to minimize the makespan
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(maximum completion time). Symbol definitions for DRCFJSP are provided in
Table 1.

Table 1 Symbol Variable Definition

Symbol Definition
𝑊 Total set of workers
𝑀 Total set of machines
𝐽 Total set of jobs
𝑂𝑖,𝑗 The 𝑗-th operation of job 𝐽𝑖
𝑆𝐸𝑖,𝑗 Earliest start time of operation 𝑂𝑖,𝑗
𝐶𝐸𝑖,𝑗 Earliest completion time of operation 𝑂𝑖,𝑗
𝑆𝐿𝑖,𝑗 Latest start time of operation 𝑂𝑖,𝑗
𝐶𝐿𝑖,𝑗 Latest completion time of operation 𝑂𝑖,𝑗
𝑆𝑘 Start processing time of machine 𝑀𝑘
𝐹𝑘 End processing time of machine 𝑀𝑘
𝑃𝑊𝑣 Preceding operation processed by the same

worker 𝑣; if 𝑂𝑖,𝑗 is the first operation, then
𝑃𝑊𝑣 = ∅

𝑆𝑊𝑣 Succeeding operation processed by the same
worker 𝑣; if 𝑂𝑖,𝑗 is the last operation, then
𝑆𝑊𝑣 = ∅

𝑇𝑖,𝑗,𝑘,𝑤 Processing time of operation 𝑂𝑖,𝑗 on machine
𝑀𝑘 by worker 𝑤

𝐿 A sufficiently large positive number

Decision variables are defined as follows:

𝑥𝑖,𝑗,𝑘,𝑤 = {1 if operation 𝑂𝑖,𝑗 is processed on machine 𝑀𝑘 by worker 𝑤
0 otherwise

𝑦𝑔,ℎ,𝑖,𝑗,𝑘 =
⎧{
⎨{⎩

1 if operations 𝑂𝑔,ℎ and 𝑂𝑖,𝑗 are both processed on machine 𝑀𝑘
and 𝑂𝑔,ℎ precedes 𝑂𝑖,𝑗

0 otherwise

𝑧𝑔,ℎ,𝑖,𝑗,𝑤 =
⎧{
⎨{⎩

1 if operations 𝑂𝑔,ℎ and 𝑂𝑖,𝑗 are both processed by worker 𝑤
and 𝑂𝑔,ℎ precedes 𝑂𝑖,𝑗

0 otherwise

Constraints:
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Equation (1) ensures each operation is processed by exactly one worker on one
machine:

∑
𝑘∈𝑀

∑
𝑤∈𝑊

𝑥𝑖,𝑗,𝑘,𝑤 = 1, ∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝐽𝑖

Equation (2) defines the earliest completion time:

𝐶𝐸𝑖,𝑗 = 𝑆𝐸𝑖,𝑗 + ∑
𝑘∈𝑀

∑
𝑤∈𝑊

𝑇𝑖,𝑗,𝑘,𝑤𝑥𝑖,𝑗,𝑘,𝑤, ∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝐽𝑖

Equation (3) defines the latest completion time:

𝐶𝐿𝑖,𝑗 = 𝑆𝐿𝑖,𝑗 + ∑
𝑘∈𝑀

∑
𝑤∈𝑊

𝑇𝑖,𝑗,𝑘,𝑤𝑥𝑖,𝑗,𝑘,𝑤, ∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝐽𝑖

Equation (4) enforces precedence constraints for operations within the same job:

𝐶𝐸𝑖,𝑗 − 𝑆𝐸𝑖,𝑗+1 ≤ 0, ∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝐽𝑖 − {1, 2, ..., 𝑛𝑖 − 1}

Equation (5) ensures each machine processes at most one operation at any time:

𝐶𝐸𝑔,ℎ−𝑆𝐸𝑖,𝑗+𝐿(1−𝑦𝑔,ℎ,𝑖,𝑗,𝑘) ≥ ∑
𝑤∈𝑊

𝑇𝑖,𝑗,𝑘,𝑤𝑥𝑖,𝑗,𝑘,𝑤, ∀𝑔, 𝑖 ∈ 𝐽, ∀ℎ ∈ 𝐽𝑔, ∀𝑗 ∈ 𝐽𝑖, ∀𝑘 ∈ 𝑀

Equation (6) ensures each worker processes at most one operation at any time:

𝐶𝐸𝑔,ℎ−𝑆𝐸𝑖,𝑗+𝐿(1−𝑧𝑔,ℎ,𝑖,𝑗,𝑤) ≥ ∑
𝑘∈𝑀

𝑇𝑖,𝑗,𝑘,𝑤𝑥𝑖,𝑗,𝑘,𝑤, ∀𝑔, 𝑖 ∈ 𝐽, ∀ℎ ∈ 𝐽𝑔, ∀𝑗 ∈ 𝐽𝑖, ∀𝑤 ∈ 𝑊

Equation (7) states all machines become available starting from time 0:

𝑆𝑘 ≥ 0, ∀𝑘 ∈ 𝑀

Equation (8) ensures a machine must be idle when processing an operation:

𝑆𝑘 − 𝑆𝐸𝑖,𝑗 + 𝐿(1 − 𝑥𝑖,𝑗,𝑘,𝑤) ≥ 0, ∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝐽𝑖, ∀𝑘 ∈ 𝑀, ∀𝑤 ∈ 𝑊

Equation (9) states machines cannot stop until processing is completed:

𝐶𝑖,𝑗,𝑘,𝑤 ⋅ 𝑥𝑖,𝑗,𝑘,𝑤 ≤ 𝐹𝑘, ∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝐽𝑖, ∀𝑘 ∈ 𝑀, ∀𝑤 ∈ 𝑊

Equation (10) calculates the earliest start time of an operation:

𝑆𝐸𝑖,𝑗 = max(𝐶𝐸𝑖,𝑗−1, 𝑆𝑘, 𝑆𝑊𝑣), ∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝐽𝑖, ∀𝑘 ∈ 𝑀, ∀𝑤 ∈ 𝑊

Equation (11) calculates the latest completion time of an operation:

𝐶𝐿𝑖,𝑗 = max(𝑆𝐿𝑖,𝑗−1, 𝐸𝑀𝑘, 𝐸𝑊𝑣), ∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝐽𝑖, ∀𝑘 ∈ 𝑀, ∀𝑤 ∈ 𝑊
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Table 2 presents a DRCFJSP instance consisting of three jobs, three machines,
and two workers. The table shows the processing time required for each op-
eration on a given machine by a specific worker, where “-”indicates that the
corresponding worker cannot operate that machine for the operation. For ex-
ample, operation 𝑂1,1 cannot be processed by worker 𝑊1 on machine 𝑀1, but
can be processed by worker 𝑊2 on 𝑀1 with a processing time of 1.

2.1 Cuckoo Algorithm
The cuckoo algorithm is a novel heuristic search algorithm based on two update
strategies: (1) searching for host nests through Lévy flight mechanisms, and (2)
replacing discovered nests through preference-based random walk. In the cuckoo
algorithm, each nest represents a feasible solution. Under ideal conditions, the
position update formula for a cuckoo is:

𝑋𝑡+1
𝑖 = 𝑋𝑡

𝑖 + 𝛼 ⊕ Lévy(𝛽)

where 𝑋𝑡
𝑖 represents the position of the 𝑖-th nest at generation 𝑡, 𝛼 is the step

size scaling factor, and ⊕ denotes point-to-point multiplication. The random
search path Lévy(𝛽) follows a Lévy distribution.

For computational convenience, literature [12] uses Equation (13) to generate
Lévy random numbers:

Lévy(𝛽) = 𝜙 × 𝜇
|𝜈|1/𝛽

where 𝜇 and 𝜈 follow standard normal distributions, and 𝜙 is calculated as:

𝜙 = ( Γ(1 + 𝛽) × sin(𝜋𝛽/2)
Γ((1 + 𝛽)/2) × 𝛽 × 2(𝛽−1)/2 )

1/𝛽

The parameter 𝛽 is typically set to 1.5. Combining these formulas yields the
cuckoo position update equation:

𝑋𝑡+1
𝑖 = 𝑋𝑡

𝑖 + 𝛼 × 𝜙 × 𝜇 × (𝑋𝑡
𝑖 − 𝑋𝑡

best)

After discarding partial solutions with discovery probability 𝑃𝑎, preference-
based random walk generates an equal number of new solutions:

𝑋𝑡+1
𝑖 = 𝑋𝑡

𝑖 + 𝛾 × (𝑋𝑡
𝑟1 − 𝑋𝑡

𝑟2)
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where 𝛾 is a scaling factor following a uniform distribution, and 𝑋𝑡
𝑟1, 𝑋𝑡

𝑟2 rep-
resent two randomly selected nests from generation 𝑡.

2.2 Algorithm Encoding
Since the standard cuckoo algorithm solves continuous optimization problems,
it cannot be directly applied to job shop scheduling. This paper introduces the
Smallest Position Value (SPV) rule to establish a mapping between individuals
and actual schedules. As shown in Figure 1, SPV sorts the original vector in
ascending order to obtain a new vector; the positions of components in the
original vector corresponding to the sorted sequence form the integer encoding
sequence.

During encoding, we first randomly generate an Operation Sequence (OS), then
allocate machines and workers based on this sequence. The complete encoding
comprises three layers: the first layer is the Operation Sequence (OS), the sec-
ond is the Machine Assignment sequence (MA), and the third is the Worker
Assignment sequence (WA). This encoding, derived from the Table 1 instance,
represents a schedule where three jobs are processed by two workers on three
machines. Job 1 contains 2 operations, Job 2 contains 2 operations, and Job
3 contains 3 operations, with the processing order: 𝑂2,1 → 𝑂2,2 → 𝑂3,1 →
𝑂3,2 → 𝑂3,3 → 𝑂1,1 → 𝑂1,2. From the complete sequence, operation 𝑂3,1 is
processed by worker 2 on machine 3, operation 𝑂2,1 by worker 2 on machine
3, and operation 𝑂3,2 by worker 1 on machine 2, with remaining operations
following similarly.

2.3 Improved Decoding Algorithm
Unlike single-resource constrained FJSP, DRCFJSP is constrained not only by
the completion time of preceding operations and the earliest available machine
time but also by the earliest available worker time. This paper improves the
insertion-based decoding scheme to enable proactive decoding for both machines
and workers simultaneously. The core idea is to effectively utilize idle time
generated during machine and worker processing by proactively scheduling them
into appropriate idle intervals, thereby reducing overall makespan.

Let 𝑆𝑇𝑖,𝑗 denote the start time of operation 𝑂𝑖,𝑗, 𝐸𝑇𝑖,𝑗 its completion time,
𝐸𝑇𝑖,𝑗−1 the completion time of its immediate predecessor, 𝑠𝑘 the start time of
machine 𝑀𝑘, and 𝑇𝑖,𝑗,𝑘,𝑤 the processing time required for operation 𝑂𝑖,𝑗 on
machine 𝑀𝑘 by worker 𝑤. During decoding, we must first check the availability
of the selected machine and worker, then determine whether idle time exists and
satisfies insertion conditions. When both machine and worker have idle time,
three possible scenarios may occur:
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Case 1: As shown in Figure 2, the idle times of machine and worker do not
overlap, making insertion impossible.

Case 2: As shown in Figure 3, while machine and worker have overlapping idle
intervals, the overlapping duration 𝑇𝑎 is less than the required processing time
𝑇𝑖,𝑗,𝑘,𝑤, preventing insertion.

Case 3: As shown in Figure 4, machine and worker have overlapping idle
intervals with duration 𝑇𝑎 ≥ 𝑇𝑖,𝑗,𝑘,𝑤, allowing insertion.

Based on all possible decoding scenarios, Algorithm 1 presents the pseudocode
for the improved decoding method.

Algorithm 1: Pseudocode for Improved Decoding Method

Input: Total number of operations 𝑇 𝑃 , machine and worker processing capa-
bility information
Output: Operation start times 𝑆𝑇𝑖,𝑗 and completion times 𝐸𝑇𝑖,𝑗, machine pro-
cessing timeline [𝑆𝑀𝑘, 𝐸𝑀𝑘], worker processing timeline [𝑆𝑊𝑠, 𝐸𝑊𝑠]

1. For each operation 𝑂𝑖,𝑗 (where 𝑡𝑝 = 1 to 𝑇 𝑃 ):

2. Initialize insertion flag: 𝑓𝑙𝑎𝑔 = 0

3. Obtain available machines and workers 𝑘, 𝑤 and processing time 𝑇𝑖,𝑗,𝑘,𝑤

4. Retrieve machine timeline [𝑆𝑀𝑘, 𝐸𝑀𝑘] and worker timeline [𝑆𝑊𝑠, 𝐸𝑊𝑠],
along with corresponding idle intervals [𝐴𝑆𝑀𝑘, 𝐴𝐸𝑀𝑘] and [𝐴𝑆𝑊𝑠, 𝐴𝐸𝑊𝑠]

5. If 𝑗 = 1 (first operation of job):

6. If both machine and worker have not started processing:

7. Set $ST_{i,j} = \max(ASM_k, ASW_s)$

8. $ET_{i,j} = ST_{i,j} + T_{i,j,k,w}$

9. Set $flag = 1$

10. Else:

11. Check insertion conditions for idle intervals

12. If machine and worker both have idle time:

13. For each idle interval:

14. If overlapping duration $T_a \geq T_{i,j,k,w}$:

15. Set $ST_{i,j} = \max(ASM_k, ASW_s)$
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16. $ET_{i,j} = ST_{i,j} + T_{i,j,k,w}$

17. Set $flag = 1$; break

18. End If

19. Else:

20. 𝐸𝑇𝑖,𝑗−1 = completion time of preceding operation

21. If machine has idle time but worker does not:

22. Check insertion conditions

23. If $ET_{i,j-1} \leq AEM_k$ and $T_a \geq T_{i,j,k,w}$:

24. Set $ST_{i,j} = \max(ET_{i,j-1}, ASM_k)$

25. $ET_{i,j} = ST_{i,j} + T_{i,j,k,w}$

26. Set $flag = 1$

27. Else If worker has idle time but machine does not:

28. Similar checking process

29. Else If both have idle time:

30. Check overlapping intervals for insertion feasibility

31. If 𝑓𝑙𝑎𝑔 = 0 (no insertion possible):

32. Set 𝑆𝑇𝑖,𝑗 = max(𝐸𝑇𝑖,𝑗−1, 𝐸𝑀𝑘, 𝐸𝑊𝑠)

33. 𝐸𝑇𝑖,𝑗 = 𝑆𝑇𝑖,𝑗 + 𝑇𝑖,𝑗,𝑘,𝑤

34. Update operation’s earliest completion time and machine/worker timelines

35. End For

2.4.1 Improved Lévy Flight
In standard cuckoo search, longer Lévy flight steps yield lower search precision
suitable for global exploration, while shorter steps provide higher precision and
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stronger local search capability. Since the standard Lévy flight uses a fixed step
size factor lacking adaptivity, it may result in slow search speed and suscep-
tibility to local optima. To address this, we employ two methods to improve
the step size factor by randomly dividing the cuckoo population into three sub-
populations. Each subpopulation independently updates using either fixed-step
Lévy flight or two improved adaptive-step Lévy flight strategies. The step size
factor automatically adjusts based on the population’s search status at different
stages, balancing global optimization speed and search precision.

The first improvement method, shown in Equation (18), adaptively adjusts the
step size factor 𝛼 based on the current nest’s position relative to the global
best nest, enabling more refined search near the optimal solution to help locate
the global optimum:

𝛼 = 𝛼0 × |𝑋𝑡
𝑖 − 𝑋𝑡

best|

where 𝛼0 is typically set to 0.01, 𝑋𝑡
𝑖 represents the position of the 𝑖-th nest at

generation 𝑡, and 𝑋𝑡
best is the current global best nest position.

The second improvement method, shown in Equation (19), adopts the approach
from literature [18] and controls the step size factor 𝛼 through algorithm itera-
tion count. During early iterations, 𝛼 is large, providing extensive search range
and reducing the risk of local optima. In later stages, 𝛼 adaptively decreases,
improving search precision for better optimal solution identification:

𝛼 = 𝛼max × cos ( 𝑡
𝑡max

× 𝛾)

where 𝑡 is the current iteration number, 𝑡max is the total iteration count, and 𝛾
is a random step factor in [0.05, 0.05].

2.4.2 Information Exchange
Since the three subpopulations conduct optimization independently, informa-
tion exchange between them every 𝑘 generations helps improve efficiency and
maintain population diversity. The exchange principle involves communicating
suboptimal individuals with the best individuals to guide weaker individuals to-
ward the global optimum. We introduce the DE/best/1 mutation strategy from
differential evolution algorithms for subpopulation differentiation, calculated as:

𝑉𝑖,𝑔 = 𝑋best,𝑔 + 𝐹 × (𝑋𝑟1,𝑔 − 𝑋𝑟2,𝑔)

where 𝑋best,𝑔 represents the current global best individual, and 𝑋𝑟1,𝑔, 𝑋𝑟2,𝑔
denote two relatively inferior individuals in subpopulation 𝑔.
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The improved cuckoo algorithm is presented in Algorithm 2.

Algorithm 2: Pseudocode for Improved Cuckoo Algorithm

Input: Iteration count 𝑖𝑡𝑒𝑟, number of nests 𝑛, maximum iterations 𝑖𝑡𝑒𝑟max,
discovery probability 𝑃𝑎
Output: Current best nest information

1. For 𝑖𝑡𝑒𝑟 = 1 to 𝑖𝑡𝑒𝑟max:

2. For each subpopulation (1 to 3):

3. Update subpopulation using Equations (12), (18), and (19)

4. Each subpopulation updates via Lévy flight with different step factors

5. Evaluate nests and discard inferior ones with probability $P_a$, generating new nests via Equation (17)

6. End For

7. Evaluate current generation and update global best nest

8. If 𝑖𝑡𝑒𝑟 mod 𝑘 = 0:

9. Apply differential operator (Equation 20) for subpopulation information exchange

10. Decode using improved decoding algorithm and update global best

11. End For

2.5 Algorithm Flow
Step 1: Initialize parameters: cuckoo population size 𝑛, maximum iterations
𝑖𝑡𝑒𝑟max, discovery probability 𝑃𝑎.

Step 2: Initialize population. Convert nest information into feasible scheduling
sequences using mapping rules. Apply improved decoding to obtain makespan,
retain the current best nest, and randomly divide the population into 3 subpop-
ulations.

Step 3: Update each subpopulation using standard Lévy flight and two im-
proved Lévy flight formulas. Decode to obtain makespan and update the cur-
rent best nest. Perform preference-based random walk via Equation (17) to
eliminate poor solutions and generate equal numbers of new solutions.
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Step 4: Every 𝑘 iterations, introduce the differential operator for information
exchange among the three subpopulations. Decode using the improved decoding
algorithm and update the current best nest.

Step 5: Output the global optimal solution when maximum iterations are
reached; otherwise, return to Step 3.

3.1 Experimental Environment and Test Instances
This study employs Matlab R2018a programming on an Intel(R) Xeon(R) CPU
E5-@3.30GHz with 8GB RAM. Given limited research on DRCFJSP and the
lack of standard benchmarks for comparative evaluation, we select the MK1-
MK10 instances from the Brandimarte [19] benchmark set to test algorithm
performance. Worker allocation follows the simulation method from literature
[11], with specific worker-machine assignments detailed in Table 3.

Table 3 Worker and Machine Allocation

Instance Allocation
MK1-2 {𝑀1, 𝑀3, 𝑀5}, {𝑀2, 𝑀4, 𝑀5}
MK3-4 {𝑀1, 𝑀2, 𝑀4}, {𝑀3, 𝑀5}
MK6,10 {𝑀1, 𝑀3, 𝑀4, 𝑀6}, {𝑀2, 𝑀4, 𝑀5}
MK7,11 {𝑀2, 𝑀3, 𝑀4}, {𝑀1, 𝑀5, 𝑀6, 𝑀7}
MK8,9,12,13 {𝑀1, 𝑀5, 𝑀6, 𝑀7, 𝑀8}, {𝑀6, 𝑀5, 𝑀8}
MK5 {𝑀1, 𝑀3, 𝑀4, 𝑀5}, {𝑀2, 𝑀4}
MK14 {𝑀1, 𝑀2, 𝑀3}, {𝑀2, 𝑀4}

3.2 Results and Analysis
Since algorithm parameters significantly impact performance and runtime, we
employ the orthogonal experimental method from literature [20] for parameter
tuning. Figure 5 shows the average trend over 10 runs of our algorithm solving
MK01 under different parameter settings.

Figure 5(a) illustrates the impact of maximum iterations 𝑖𝑡𝑒𝑟max. Small iter-
ation limits may force premature termination before convergence, degrading
solution quality. As iterations increase, solution quality improves, but beyond a
certain point, further increases do not significantly improve optimal solution fre-
quency while raising computational complexity. Therefore, we set 𝑖𝑡𝑒𝑟max = 200
to ensure efficiency. Figure 5(b) shows that a population size around 50 yields
excellent solutions, so we set 𝑛 = 50. Figure 5(c) displays the effect of discovery
probability 𝑃𝑎, with optimal solutions obtained around 𝑃𝑎 = 0.25. Larger values
gradually degrade solution quality, leading to our final setting of 𝑃𝑎 = 0.25.
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To validate our algorithm’s effectiveness, we compare it with alternative al-
gorithms. Each instance runs 20 consecutive times, with results recorded and
analyzed in Table 4. Here, 𝑉 𝑁𝑆 [10], 𝐾𝐺𝐹𝑂𝐴 [11], and 𝑀𝐵𝑆𝐴 [21] repre-
sent optimal values from literature for DRCFJSP; 𝐼𝐶𝑆 denotes the improved
cuckoo algorithm with standard decoding; 𝐶𝑆𝑁𝐷 represents standard cuckoo al-
gorithm with improved decoding; and 𝐼𝐶𝑆𝑁𝐷 is our proposed improved cuckoo
algorithm with improved decoding.

Table 4 reveals that with only algorithmic improvements, good results are eas-
ily obtained for small-scale problems. However, as problem scale increases,
idle times for machines and workers grow, and standard decoding cannot ef-
fectively utilize these intervals, making algorithmic improvements alone insuffi-
cient. 𝐶𝑆𝑁𝐷 benefits from cuckoo algorithm’s inherent superiority in balancing
global and local search, with improved decoding further reducing makespan and
enhancing efficiency. Our 𝐼𝐶𝑆𝑁𝐷 not only improves the cuckoo algorithm
to strengthen search capability but also adjusts decoding to effectively utilize
idle time, substantially shortening makespan. Compared with other algorithms,
𝐼𝐶𝑆𝑁𝐷 consistently produces superior solutions across most instances.

Figures 6 and 7 present Gantt charts for MK1 and MK2 solutions obtained
by our algorithm, where the x-axis represents processing time, y-axis shows
machines, and each box contains job number and worker number.

To better evaluate performance, we introduce the Mean Relative Percentage De-
viation (𝑀𝑅𝑃𝐷) and Average Relative Percentage Deviation (𝐴𝑅𝑃𝐷) metrics
from literature [10]:

𝑀𝑅𝑃𝐷 = 𝐶best
max − 𝐶 low

max
𝐶 low

max
× 100

𝐴𝑅𝑃𝐷 = 1
𝑠

𝑠
∑
𝑖=1

𝐶best
max − 𝐶 low

max
𝐶 low

max
× 100

where 𝐶best
max is each algorithm’s best solution and 𝐶 low

max is our algorithm’s best
solution.

Table 5 demonstrates that algorithms with improved decoding outperform stan-
dard decoding versions. 𝐼𝐶𝑆𝑁𝐷 surpasses 𝐶𝑆𝑁𝐷 in both solution quality and
best solution attainment, while the improved cuckoo algorithm overall outper-
forms standard CS, exhibiting stronger search capability. Table 6 compares
𝐼𝐶𝑆𝑁𝐷 with three other algorithms, showing 𝐼𝐶𝑆𝑁𝐷 achieves minimum per-
centage deviation of 0 for all instances with smaller average deviations, indicat-
ing more stable and higher-quality solutions. Other algorithms generally exhibit
poorer solution quality and larger average deviations. Thus, 𝐼𝐶𝑆𝑁𝐷 demon-
strates superior solving capability, stability, and solution quality for DRCFJSP.
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4 Conclusion
This paper improves the cuckoo algorithm while maintaining its core framework
by dividing the population into three subpopulations with different Lévy flight
strategies and introducing a differential operator for inter-subpopulation infor-
mation exchange, significantly enhancing search capability. An improved decod-
ing scheme is designed to avoid processing time conflicts between machines and
workers while proactively identifying insertable idle intervals, substantially re-
ducing overall makespan. Benchmark testing and comparative analysis validate
the effectiveness and stability of the improved cuckoo algorithm and decoding
method. Future research will incorporate dynamic production factors such as
machine failures, maintenance, urgent order insertion, and order cancellation.
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Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv —Machine translation. Verify with original.
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