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Abstract

Emerging intelligent transportation systems hold significant promise for improv-
ing traffic flow, optimizing fuel efficiency, reducing delays, and enhancing over-
all driving experience. Currently, traffic congestion constitutes an extremely
serious challenge for humanity, particularly severe at urban intersections with
dense traffic. The reward mechanism of the signal control system is improved by
transitioning from a shared reward scheme across all intersections to a unique
reward per intersection, and through the combination of a dense sampling strat-
egy with multi-intersection signal control, leveraging the currently prevalent
deep reinforcement learning to solve traffic signal timing problems. Simulation
experiments are conducted based on the internationally mainstream traffic sim-
ulation software (SUMO), and results demonstrate that the improved deep re-
inforcement learning multi-intersection signal control method achieves superior
control performance compared to traditional reinforcement learning methods.
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Emerging intelligent transportation systems hold significant promise for improv-
ing traffic flow, optimizing fuel efficiency, reducing delays, and enhancing the
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overall driving experience. Today, traffic congestion represents an extremely
serious challenge for humanity, particularly severe at urban intersections with
dense traffic. This paper improves the reward mechanism of signal control sys-
tems by transitioning from a shared reward across all intersections to a unique re-
ward for each individual intersection. Combined with a dense sampling strategy
for multi-intersection signal control, the proposed approach leverages the popu-
lar deep reinforcement learning technique to solve traffic signal timing problems.
All simulation experiments are conducted using the internationally mainstream
traffic simulation software SUMO. Experimental results demonstrate that the
improved deep reinforcement learning method for multi-junction signal control
achieves superior performance compared to traditional reinforcement learning
approaches.

Keywords: intelligent transportation system; deep reinforcement learning;
traffic flow; multi-junction signal control

0 Introduction

With the continuous growth in the number of motor vehicles, traffic congestion
has become an extremely complex and troubling problem facing humanity, par-
ticularly acute in large metropolitan areas with complicated traffic conditions [1].
Traditional traffic signals operate with fixed timing, leading to unnecessary wait-
ing during green phases and causing substantial resource waste. Multi-junction
traffic signal control based on deep reinforcement learning can effectively al-
leviate traffic congestion, reduce accidents, and improve system efficiency and
rationality.

Conventional Markov decision processes and reinforcement learning suffer from
poor scalability, resulting in state space explosion. Reinforcement learning is an
adaptive control strategy where one or more agents autonomously learn to solve
tasks in an environment through experience generated by interacting with the en-
vironment itself [2]. Early traffic signal control relied heavily on manual feature
extraction, requiring significant human resources while being prone to state fluc-
tuations and loss of critical state information. Traditional Q-learning, proposed
by Watkins in 1989, is a model-free online reinforcement learning algorithm [3].
In Q-learning, the green light duration for each time step should increase with
rising traffic intensity. However, configuring excessively high or low phase green
times for a given traffic state is highly unreasonable. EL-Tantawy et al. [4] sum-
marized reinforcement learning approaches for traffic signal control from 1997
to 2010, which were limited to tabular Q-learning and typically used linear
functions to estimate Q-values. Due to technological constraints at the time,
state space definitions often employed simple data types such as queue lengths
and traffic flow volumes, which could not fully capture the complexity of traf-
fic systems, preventing reinforcement learning from achieving optimal results in
traffic signal control. Balaji et al. [5] combined traditional Q-learning with traf-
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fic signal control, validating its effectiveness. However, traditional Q-learning
may lead to an excessively large action space, ultimately causing dimensionality
explosion.

With the development of reinforcement learning and deep learning, researchers
have proposed combining them as deep reinforcement learning to estimate Q-
values. Li et al. [6] applied deep reinforcement learning to single-intersection
control problems with improvements. LEE et al. [7] combined Convolutional
Neural Networks (CNN) with Q-learning to propose the DQN algorithm, which
utilizes experience replay to break sample sequence correlations and improve
learning efficiency. Advances in vehicle communication technology now provide
more detailed information about vehicle positions and speeds. This enables
comprehensive real-time information combined with edge cloud computing to
implement more flexible traffic light control policies for effective flow improve-
ment, and in the long term, could directly drive fully autonomous driving sce-
narios. While the potential benefits are enormous, the technical challenges are
equally significant. Moreover, such control systems involve unprecedented scale
in terms of intrinsic complexity, geographic scope, and number of objects. Real-
world traffic signal timing is often distributed, hybrid, and difficult to predict.
Overcoming these challenges requires introducing deep reinforcement learning
concepts—DQN is an algorithm with strong perception capabilities and rapid
decision-making ability.

The main advantages of the proposed method are: (a) improving the reward
mechanism of traffic signal control systems by changing from a shared reward
across all intersections to a unique reward for each intersection; (b) combining
dense sampling strategy with multi-junction signal control to enhance control
performance; (¢) conducting all simulation experiments using the internationally
mainstream traffic simulation software (Simulation of Urban Mobility, SUMO)
to significantly improve experimental reliability and stability; and (d) employing
reasonable parameter settings and multiple experiments to reduce randomness
and enhance control system stability.

1 Intersection Model Establishment

This paper establishes two types of road intersection models and presents opti-
mization solutions, described separately below.

1.1 Single Intersection Model

The single intersection model established in this paper is shown in Figure 1,
where Q,(t) represents the number of vehicles waiting to pass through traffic
flow 7, and the intersection state is represented by P(t) € {0, 1,2, 3}. The traffic
light configuration is defined as: “0” : direction 1 green, direction 2 red; “1” :
direction 1 yellow, direction 2 red; “2” : direction 2 green, direction 1 red; “3”
: direction 2 yellow, direction 1 red.
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As shown in equation (1), the action decision A(t) at time ¢ is selected, where
A(t) € {0,1} is represented by a binary variable: “0” means continue, “1” means
switch.

These rules generate a strict cyclic control sequence. As shown in Figure 2, the
queue state evolves over time under recursive control. Next, we examine the
vehicle calculation function for a single intersection.

Q;(t) represents the number of vehicles waiting to pass through traffic flow ¢ at
time ¢. S;(¢) represents the number of vehicles of traffic flow ¢ appearing at the
intersection at time ¢, and W;(¢) represents the number of vehicles of traffic flow
1 leaving the intersection.

1.2 Multi-Junction Intersection Model

To investigate the performance and scalability of the DQN algorithm in large-
scale scenarios on more complex roads, this paper considers a linear network
topology [8], as shown in Figure 3, examining a multi-junction intersection
model structure with NV intersections and bidirectional traffic flow.

At this point, the dimensionality changes, requiring an upgrade to the single-
intersection function. The system state P(t) at time ¢ must be described by a

5_tuple (in(t)7 QnZ (t)7 QnB (t)a Qn4(t)7 Pn(t» where n =1...N.

The following is the queue state transition function for the multi-junction inter-
section model structure:

Next, we examine the vehicle calculation function for the multi-junction inter-
section model structure: S,,,(t) represents the number of vehicles appearing in
direction 7 at intersection n at time t, W, ,(t) represents the number of vehicles
leaving in direction ¢ at intersection n at time ¢, and S,,; (¢), S5 (%), Sps(t), S,a(t)
(for n =1... N) correspond to all vehicles approaching the intersection from the
external environment:

Equations (5) and (6) indicate that vehicles passing through direction 1 of in-
tersection n during time period ¢ appear as vehicles in direction 1 of intersec-
tion (n + 1) during time period u moving eastward. Similarly, vehicles passing
through direction 3 of intersection (n+1) during time period ¢ appear as vehicles
in direction 3 of intersection n during time period v moving westward. This cre-
ates highly complex interactions between vehicles across intersections along the
main road, presenting additional challenges for optimizing control strategies.

2 Deep Reinforcement Learning Framework
2.1 State Representation

On each arm of multi-junction intersections, incoming vehicles are discretized
into cells that can identify whether vehicles are present. The system state S
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is fed into the DQN as input to both the target and evaluation networks. The
algorithm’ s environmental state is represented as road surface discretization to
inform the agent of vehicle positions at specific times. The input for a single
intersection is S = (@4, Q4; P), while for multi-junction scenarios it becomes
S = (Qn1, Qnas Qnszs Quna; P,), resulting in a dimensional change.

2.2 Action Behavior

The action set represents the available interaction methods for the agent, defined
as the configuration in Section 1.1. Executing an action means turning some
traffic lights green on a set of lanes for a fixed duration.

2.3 Reward Mechanism

In Sun et al.’ s experiment [9], the delay time for vehicles entering each lane was
set as d, the sum of queue lengths of all waiting vehicles in entering lanes as g,
the waiting time of all vehicles in entering lanes as w, phase state switching as
p, emergency braking stops as e, and the number of vehicles leaving after action
execution as n. The comprehensive reward formula is:

This paper improves the reward mechanism for multi-junction signal control sys-
tems by transforming the R, function into a two-dimensional function R,[z][y],
changing from shared rewards across all intersections to unique rewards for each
intersection. The formula is:

This means subtracting the cumulative reward value of all previous intersections
from the reward value of all previously passed vehicles. After i iterations, the
current intersection’ s reward value is obtained—the so-called unique reward.
This way, each intersection has its own reward, significantly improving the pre-
cision of experimental results after implementing this improved mechanism.

2.4 Q-Learning Update Formula
This paper uses the following update formula:

The reward 7, ; is obtained after taking action a, in state s;, and s, is the next
state after taking the relevant action. The discount factor v indicates that future
rewards are increasingly penalized compared to immediate rewards as time step
t progresses. This formula updates the current action’s Q-value in state S, using
immediate rewards and discounted future Q-values. The term representing the
implicit value of future actions holds s, ; and also possesses the maximum
discounted return after the next state, i.e., the maximum discounted return of
the state. This demonstrates that regardless of how the agent chooses the next
action, decisions are based not only on immediate rewards but also on expected
future discounted rewards. During simulation, the agent continuously iterates
to acquire knowledge about action sequence values, ultimately selecting action
sequences that achieve higher cumulative returns for optimal performance.
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2.5 Deep Neural Network

This paper employs the Deep Q-Learning algorithm, mapping observed environ-
mental states s, to action-related Q-values through a deep neural network. Its
input is the IDR (environmental state vector) at time step ¢, and the network’
s output is the Q-value of actions from state s,. Generally, the neural network
input iny , is defined as the k-th element of vector IDR at time step ¢, repre-
senting the n-th input to the neural network at time ¢. In this paper, the input
is the system state S = (Q,,1, @nas @nzs @na; P,,)- The neural network output
is defined as outy, = Q(s;,a,,), representing the Q-value of taking the v-th
action at time step t.

This paper first presents the DQN algorithm for single-intersection scenarios,
then demonstrates its effectiveness for linear topology structures with N inter-
sections. Even in the latter case, a “single-agent” DQN algorithm with global
access is adopted. This approach differs from “multi-agent” methods by using
only one agent to reduce intersection complexity and redundancy. Although the
single-agent method involves a larger state space, it achieves more intelligent
control and coordination. Figure 4 clearly illustrates the connections between
layers in the deep neural network:

As shown in the figure, n IDR vectors are input to the deep neural network
and transmitted to neural network layers for training. After training, Q-values
related to time step t are output.

3 Simulation Experiments

All experiments are conducted using the internationally recognized traffic simu-
lation software SUMO [10] (Simulation of Urban Mobility), an open-source, mi-
croscopic, multi-modal traffic simulation platform that allows individual route
planning for each vehicle on the road. It enables simulation of given traffic de-
mands composed of individual vehicles and their movement in a specified road
network, as illustrated in Figure 5.

3.1 System Input

Before training begins, the system first generates simulations of vehicles and
intersections. As shown in Figure 5, the system randomly generates vehicles
and traffic signal states. The specific state transition process is reflected in
Figure 2, which only magnifies the generation process for one intersection in the
multi-junction network. The complete multi-junction road network generation
process is shown in Figure 6, forming an entire multi-junction road network
simulation.

After simulation completion, the intersection system state S is fed as input to
both target and evaluation networks [11], where S = (Q,,1, @2 @nzs @na; Ph)-
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Here, Q,1,Q 2, @3, @na represent vehicles approaching from four directions
at each intersection, while P, represents the vehicle state transition probabil-
ity. The vector S = (Q,,1, @2, Qnzs Qna; P,) is ultimately input into the DQN
algorithm for training.

3.2 Dense Sampling Strategy

The dense sampling strategy enhances model implementation and testing,
thereby improving agent performance during training when the v value is high.
The agent’ s training phase involves finding the most valuable action given an
environmental state. However, during early training stages, the most valuable
actions are unknown. To overcome this, the agent should initially explore
action consequences without concern for performance. The hyperparameters
for agent model training are set as follows:

a) Neural network: 5 layers, each containing 400 neurons.
b) v value: increased from 0.25 to 0.75.

¢) Reward function: unique reward, as described in Section 2.3.

The sampling method in Figure 8 collected approximately 2.5 million samples
over 4,000 training episodes. To achieve a qualitative improvement in train-
ing episodes, the v value was increased to 0.75. Figures 9 and 10 show that
5,000 training episodes collected over 60 million samples, demonstrating that
the proposed dense sampling method provides a qualitative improvement. This
combination of the new reward function and sampling strategy helps solve Q-
value instability issues and significantly reduces the likelihood of misguidance
by future optimal actions.

3.3 System Training Process

@, to Q4 represent only a portion of the multi-junction traffic network; the ac-
tual experimental scenario is much more complex. Target Q-values provide the
foundation for updating the neural network approximator through Q-Learning,
while the evaluation network is updated via gradient descent and greedy strate-
gies.

As established in Sections 1.1 and 1.2, two models are created: single inter-
section and linear topology. Experimental comparisons between these models
clearly demonstrate the advantages of the proposed method. By combining
dense sampling strategy, the agent’ s training dataset is substantially increased,
making Q(s,a) more stable and convergent. Specific experimental results are
presented in Section 4.

The interaction method for vehicles at intersections is shown in Figure 7, im-
plemented through formulas (4), (5), and (6) from Section 1.2. The numbers
on the right side of the figure represent the number of vehicles waiting on each
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road, while black rectangles indicate vehicles entering from surrounding roads.
This creates highly complex interactions between vehicles for coordinated and
stable training.

4 Experimental Results Analysis

This paper compares experimental results between single and multi-junction
scenarios. Figure 8 shows the cumulative negative reward values obtained from
single-intersection training [12]. The results are unsatisfactory, with reward
values showing excessive fluctuations and large value ranges, indicating high
instability.

Next, we examine experimental results comparing the original shared reward
and improved unique reward for multi-junction scenarios, shown in Figures 9
(shared) and 10 (unique). The left figure’ s stability is significantly weaker than
the right figure’ s, and the multi-junction reward value range is much smaller
than that of single-junction [13], demonstrating greater stability. The dense
sampling strategy [14] yields an order of magnitude larger sample size than the
single-junction case, further proving the superiority and stability of the proposed
algorithm.

Three trained network models are tested, with results shown in Figure 11. Here,
x, represents the vehicle queue length at single intersections, while z, and x4
represent queue lengths for multi-junction shared and unique reward scenarios,
respectively. The figure clearly shows x; has the longest queue length, averaging
nearly 10m. x, shows some improvement, while x4 performs best, reducing av-
erage queue length to approximately 2.5m—a substantial performance improve-
ment. Testing clearly demonstrates the advantages of the proposed method,
which significantly reduces average vehicle queue length and improves agent
performance and system stability.

5 Conclusion

Traffic intelligence and informatization represent a prevailing trend in modern
society. Due to the complexity and dynamic nature of traffic systems [15], cou-
pled with continuously expanding control scope and exponentially increasing
traffic state information data, control complexity grows exponentially, yet traf-
fic network signal control problems remain unsolved effectively.

This paper explores both single-junction and more complex linear network topol-
ogy scenarios [16], applying deep reinforcement learning algorithms to both
cases. Comparative results clearly demonstrate that the proposed method effec-
tively reduces intersection congestion and significantly saves energy consump-
tion, providing substantial improvements in efficiency and performance. The
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agent maximizes global vehicle passage speed within limited time, continuously
adjusting its internal parameters through reinforcement learning according to
different policies. Ultimately, deep reinforcement learning discovers more com-
plex cross-road network features, enabling direct learning of effective control
strategies from high-dimensional data. This allows the agent to significantly
improve average vehicle speed, minimize average travel time, reduce average
waiting queue length, and select optimal traffic control strategies by observ-
ing current traffic states. Experimental results show that the improved multi-
junction control method substantially enhances system control performance.

Over the past few years, reinforcement learning techniques for traffic signal con-
trol have matured significantly with the popularization of deep learning. Future
work will investigate algorithms in more complex road scenarios, integrating
the proposed method with vehicle communication technology to provide more
detailed vehicle status information. Combining comprehensive real-time infor-
mation with edge cloud computing will ultimately achieve effective traffic flow
improvement and flexible intelligent traffic control.
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