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Abstract
In mobile crowdsensing systems, tasks exhibit spatiotemporal coverage overlap,
which may lead to redundant data collection and consequently cause data re-
dundancy issues. To address this, we propose a task allocation method that
can simultaneously control both intra-task and inter-task data redundancy.
The method first proposes a trajectory sequence prediction model based on
Long Short-Term Memory (LSTM) neural networks to perform fine-grained
spatiotemporal unit-based trajectory sequence prediction for task participants.
Subsequently, based on the trajectory prediction results, an optimization model
for minimizing data redundancy is proposed. By minimizing the data redun-
dancy degree of spatiotemporal units, the data redundancy problem within in-
dividual tasks is controlled, and by maximizing the reuse of sensing data from
individual task participants across spatiotemporal units, the data redundancy
arising from spatiotemporal coverage overlap among multiple tasks is controlled.
Experimental results demonstrate that the proposed task allocation method can
effectively reduce both intra-task and inter-task data redundancy.
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Abstract: Due to the overlap of time and space coverage between tasks in
mobile crowd sensing systems, repeated data collection may occur and cause
data redundancy problems. To address this issue, we propose a task allocation
method that can simultaneously control data redundancy within and between
tasks. The method first introduces a trajectory sequence prediction model based
on Long Short-Term Memory (LSTM) neural networks to predict the trajectory
sequences of task participants within subdivided spatiotemporal units. Based
on the trajectory prediction results, we then propose an optimization model
that minimizes data redundancy. This model controls data redundancy within
a single task by minimizing the data redundancy metric in each spatiotemporal
unit, and controls data redundancy caused by spatiotemporal coverage overlap
between multiple tasks by maximizing the reuse of sensing data from individual
participants across spatiotemporal units. Experimental results demonstrate that
the proposed task allocation method can effectively reduce data redundancy
both within and between tasks.

Keywords: mobile crowd sensing; data redundancy; trajectory sequence pre-
diction; optimization model

0 Introduction
Mobile Crowd Sensing (MCS) has emerged as a novel IoT sensing paradigm
that leverages the sensing capabilities of mobile devices, attracting widespread
attention from both academia and industry. Compared with traditional static
sensor networks, MCS utilizes sensors embedded in mobile devices and the mo-
bility of participants to perceive the surrounding environment, achieving broader
spatiotemporal coverage without incurring substantial costs or time investments.
MCS has found extensive applications in environmental monitoring, urban man-
agement, and other scenarios. Sensing quality and cost represent crucial per-
formance metrics in mobile crowd sensing, where sensing quality is primarily
measured by spatiotemporal coverage and cost control generally manifests in
managing participant compensation.

To balance sensing quality and cost, some studies aim to achieve full coverage
or maximize coverage range under budget constraints, while others seek to min-
imize sensing costs while meeting coverage requirements. Further cost control
efforts have begun addressing data redundancy in task allocation. Previous re-
search indicates that once tasks achieve certain coverage levels, adding more
participants yields marginal improvements in sensing results while increasing
costs unnecessarily.

Existing task allocation strategies primarily focus on data redundancy within in-
dividual tasks. Some studies analyze spatiotemporal correlations between data
to enable high-precision data inference, thereby avoiding redundancy and reduc-
ing sensing costs. Others consider participant uncertainty and uncontrollability,
analyzing mobility patterns to develop reasonable task allocation methods. Cer-
tain approaches minimize redundant data collection among multiple participants
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serving the same task to reduce data redundancy. To ensure adequate data col-
lection while preventing excessive redundancy, some works define redundancy
factors to compute data quality or set maximum thresholds for sample collec-
tion per task, though these methods overlook inter-task redundancy. Other
research proposes graph similarity models for fine-grained image selection to
address redundancy in uploaded images among participants. Some approaches
introduce task redundancy factors into matching functions to penalize redun-
dant task assignments, thereby avoiding intra-task redundancy and saving bud-
gets to complete more tasks. Within the compressive sensing domain, some
methods exploit implicit correlations among sensing data to reduce redundancy
while selecting appropriate user groups to guarantee spatiotemporal coverage
of sensing grids. However, these methods assume fixed sensing regions for par-
ticipants, whereas in MCS scenarios, participants are mobile and their mobility
significantly impacts sensing quality.

Beyond intra-task redundancy, inter-task redundancy also presents a critical
challenge. Specifically, when two tasks require data from the same spatiotem-
poral unit and different participants are assigned to collect this data separately,
task-level redundancy emerges. Although existing MCS task allocation meth-
ods analyze inter-task correlations, their objectives typically focus on cost mini-
mization. Some studies consider spatiotemporal inclusion relationships between
tasks to minimize incentive costs, while others define correlation metrics be-
tween tasks to reduce participant costs. However, these approaches ignore the
impact of inter-task correlations on redundancy control, particularly the data
redundancy caused by spatiotemporal coverage overlap among multiple tasks.
Moreover, reducing inter-task data redundancy is extremely challenging as it
requires considering different spatiotemporal granularities across tasks while
balancing data quality and incentive payment differences.

To achieve data redundancy control during task allocation and address these
challenges, we must predict participants’longer-term mobility trajectory se-
quences. Existing studies typically employ deep learning methods, Markov
models, or probability models based on historical information for trajectory
prediction. However, conventional RNNs suffer from limitations in addressing
long-term dependencies and contextual generalization for long sequence pre-
diction, Markov model complexity increases rapidly with sequence length, and
probability-based or statistical analysis methods exhibit low accuracy. In con-
trast, Long Short-Term Memory (LSTM) neural networks are better suited for
effectively handling gradient vanishing and explosion problems in long sequence
training. Therefore, we utilize LSTM neural networks for long trajectory se-
quence prediction. While typical LSTM-based trajectory prediction models use
short-term historical sequences as input to obtain future trajectories, we enhance
prediction accuracy by analyzing participants’long-term trajectory information,
constructing a long-term visit probability matrix as model input, and employing
an encoder-decoder framework for continuous trajectory sequence prediction.

In summary, this paper proposes a task allocation method that controls both
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intra-task and inter-task data redundancy while meeting sensing quality con-
straints, leveraging LSTM neural networks to analyze participants’future mo-
bility trajectories. Our main contributions are:

a) To enable more accurate prediction of participants’future trajectories, we
analyze long-term visit probabilities, define a spatiotemporally relevant
visit probability matrix, and propose an LSTM-based participant mobility
trajectory sequence prediction model that improves prediction accuracy.

b) To control costs, we propose a data redundancy minimization optimiza-
tion model based on participant mobility trajectories. This model mini-
mizes spatiotemporal unit data redundancy through fine-grained time slot
partitioning to control intra-task redundancy, while simultaneously ana-
lyzing spatiotemporal coverage overlap among multiple sensing tasks to
maximize reuse of participant sensing data across spatiotemporal units,
thereby reducing inter-task redundancy and lowering platform costs.

1 System Model and Problem Definition
In our system, a day is divided into 𝐾 equal-length time slots, with all slots
forming set 𝒯 = {𝑇1, 𝑇2, ..., 𝑇𝐾}, where the 𝑘-th slot is denoted as 𝑇𝑘. The
MCS activity area is partitioned into 𝐺 grids, with all regions forming set ℛ =
{𝑅1, 𝑅2, ..., 𝑅𝐺}, where the 𝑔-th partition is denoted as 𝑅𝑔. Grid partitioning is
easy to implement and highly scalable, allowing adjustment of grid width and
length to achieve different granularity control.

The system publishes a series of crowd sensing tasks, with 𝑀 tasks form-
ing task set 𝒮 = {𝑠1, 𝑠2, ..., 𝑠𝑀}. For any task 𝑠𝑖, there exist required time
range 𝒯𝑠𝑖

⊆ 𝒯 and space range ℛ𝑠𝑖
⊆ ℛ. Here, 𝒯𝑠𝑖

represents the time
slots that task 𝑠𝑖 needs to sense, being any specified slots from system parti-
tion 𝒯, i.e., 𝒯𝑠𝑖

= {𝑇𝑝𝑠𝑖,1
, ..., 𝑇𝑝𝑠𝑖,𝑡

, ..., 𝑇𝑝𝑠𝑖,|𝒯𝑠𝑖 |
}, where |𝒯𝑠𝑖

| denotes the num-
ber of time slots required by task 𝑠𝑖. ℛ𝑠𝑖

represents the partitions that task
𝑠𝑖 needs to sense, being any specified regions from system partition ℛ, i.e.,
ℛ𝑠𝑖

= {𝑅𝑞𝑠𝑖,1
, ..., 𝑅𝑞𝑠𝑖,𝑟

, ..., 𝑅𝑞𝑠𝑖,|ℛ𝑠𝑖 |
}, where |ℛ𝑠𝑖

| is the number of partitions
required by task 𝑠𝑖.

Assume the system has 𝑁 participants, with participant set 𝒲 =
{𝑤1, 𝑤2, ..., 𝑤𝑁}. For any participant 𝑤𝑗, 𝑤𝑗 ∈ 𝒲 can access task details
in the sensing system and participate at any time.

Each task 𝑠𝑖 has a budget 𝐵𝑠𝑖
for task allocation compensation and requires

participants to be within the sensing time range 𝒯𝑠𝑖
and space range ℛ𝑠𝑖

to
provide valid sensing data. To facilitate representing task completion, we define
a“time-partition pair”as a binary group formed by any time slot 𝑇𝑝𝑠𝑖

and any
partition 𝑅𝑞𝑠𝑖

in task 𝑠𝑖. The set of time-partition pairs contained in task 𝑠𝑖 is
denoted as ℒ𝑠𝑖

= {(𝑇𝑝𝑠𝑖
, 𝑅𝑞𝑠𝑖

)|𝑇𝑝𝑠𝑖
∈ 𝒯𝑠𝑖

, 𝑅𝑞𝑠𝑖
∈ ℛ𝑠𝑖

}. To ensure the quality
of returned sensing results, at least 𝐿 sensing data reports must be collected in
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each time-partition pair.

To achieve balanced data distribution across a task’s time-partition pairs and re-
duce data redundancy, we further divide each time slot into finer granularities by
uniformly partitioning each slot into 𝐿 equal-length sub-slots. For example, di-
viding slot 𝑇𝑝𝑠𝑖

into 𝑇 (1)
𝑝𝑠𝑖

, 𝑇 (2)
𝑝𝑠𝑖

, ..., 𝑇 (𝐿)
𝑝𝑠𝑖

, where 𝑇 (𝜏)
𝑝𝑠𝑖

represents the 𝜏 -th sub-slot in
time slot 𝑇𝑝𝑠𝑖

. We name the binary group of subdivided sub-slots and partitions
as“spatiotemporal units,”so one time-partition pair contains 𝐿 spatiotemporal
units. For instance, a time-partition pair (𝑇𝑝𝑠𝑖

, 𝑅𝑞𝑠𝑖
) in task 𝑠𝑖 can be repre-

sented after fine-grained division as (𝑇 (𝜏)
𝑝𝑠𝑖

, 𝑅𝑞𝑠𝑖
), where 𝑇 (𝜏)

𝑝𝑠𝑖
is the 𝜏 -th sub-slot

divided from time slot 𝑇𝑝𝑠𝑖
. Therefore, within each task, to achieve more bal-

anced data collection, we hope that data collected in each time-partition pair is
evenly distributed across its divided spatiotemporal units.

Additionally, for each participant 𝑤𝑗, due to device and other constraints, each
participant can participate in at most 𝜔 spatiotemporal units of data collection
work in the system.

As shown in Figure 1, assuming task 𝑠1 has time range 𝒯𝑠1
= {𝑇1, 𝑇2, 𝑇3}

and space range ℛ𝑠1
= {𝑅1, 𝑅2, 𝑅3, 𝑅4}, the set of time-partition pairs is

ℒ𝑠1
= {(𝑇1, 𝑅1), (𝑇2, 𝑅2), (𝑇3, 𝑅3)}, illustrated by green and blue boxes. Task

𝑠2 has time range 𝒯𝑠2
= {𝑇2, 𝑇3, 𝑇4} and space range ℛ𝑠2

= {𝑅2, 𝑅3, 𝑅4}, with
time-partition pairs ℒ𝑠2

= {(𝑇2, 𝑅2), (𝑇3, 𝑅3), (𝑇4, 𝑅4)}, shown by orange and
blue boxes. Taking time slot 𝑇3 as an example, to achieve balanced data dis-
tribution within 𝑇3, we further divide 𝑇3 into three sub-slots 𝑇 (1)

3 , 𝑇 (2)
3 , and

𝑇 (3)
3 . Our task allocation method addresses each spatiotemporal unit contained

in time-partition pairs to ensure collected data is evenly distributed across fine-
grained units rather than concentrating in the same unit, thereby controlling
data redundancy in each spatiotemporal unit.

Moreover, tasks 𝑠1 and 𝑠2 share identical time-partition pairs (𝑇2, 𝑅2) and
(𝑇3, 𝑅3), shown as blue boxes in the figure. In this case, spatiotemporal units
(𝑇 (1)

3 , 𝑅3), (𝑇 (2)
3 , 𝑅3), and (𝑇 (3)

3 , 𝑅3) each require only one data report to sat-
isfy data collection needs for both tasks. Ignoring the spatiotemporal overlap
between tasks 𝑠1 and 𝑠2 and independently assigning data collection for these
three spatiotemporal units to different participants would not only generate du-
plicate data collection but also incur duplicate costs. Our approach minimizes
inter-task data redundancy by maximizing the reuse of data collected in each
spatiotemporal unit across multiple tasks during task allocation.

2 Task Participant Trajectory Prediction Model
To allocate suitable participants to tasks, we must predict participant mobil-
ity trajectories across different spatiotemporal units. Therefore, we design an
LSTM-based participant mobility trajectory sequence prediction model. Rather
than directly using statistical models based on historical records to derive par-
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ticipant visitation states for specific spatiotemporal units, our LSTM approach
enables more accurate trajectory prediction.

As shown in Figure 2, the prediction model comprises encoder and decoder com-
ponents. The encoder processes input data while the decoder handles output
data, with each component containing 𝐿 LSTM units. The visit probability ma-
trix represents the probability of participant 𝑤𝑗 visiting each partition in each
sub-slot of time slot 𝑇𝑘 during historical statistical periods, denoted as proba-
bility matrix 𝑃 𝑘

𝑗 . Element 𝑃 𝑘
𝑗 (𝜏, 𝑔) indicates the probability of participant 𝑤𝑗

visiting partition 𝑅𝑔 in sub-slot 𝑇 (𝜏)
𝑘 . For example, in past seven-day historical

records, if a participant visited partition 𝑅1 twice, partition 𝑅2 once, and par-
tition 𝑅3 four times in sub-slot 𝑇 (1)

𝑘 , then 𝑃 𝑘
𝑗 (1, 1) = 2/7, 𝑃 𝑘

𝑗 (1, 2) = 1/7, and
𝑃 𝑘

𝑗 (1, 3) = 4/7.

If we denote the first row of matrix 𝑃 𝑘
𝑗 as 𝑃 𝑘

𝑗 (1, ∶), the 𝜏 -th row as 𝑃 𝑘
𝑗 (𝜏, ∶), and

the 𝐿-th row as 𝑃 𝑘
𝑗 (𝐿, ∶), then the input for 𝐿 time steps can be represented as

𝐼𝑁 = {𝑃 𝑘
𝑗 (1, ∶), ..., 𝑃 𝑘

𝑗 (𝜏, ∶), ..., 𝑃 𝑘
𝑗 (𝐿, ∶)}. The 𝐿 elements correspond to inputs

for 𝐿 units in the encoder. For representation convenience, we denote the input
for the 𝜏 -th unit as time step 𝜏 input. To accelerate convergence without signif-
icantly degrading performance, we first embed each input into a 𝑑-dimensional
embedding vector through an embedding layer. The embedding vector for time
step 𝜏 input 𝑃 𝑘

𝑗 (𝜏, ∶) is 𝑒𝜏 , as shown in equation (2). We then use this embed-
ding vector as input for the unit at this time step to obtain the hidden state ℎ𝜏
at time step 𝜏 , as shown in equation (3).

Equation (2) uses 𝑊𝑒𝑛𝑐 as the embedding weight with ReLU activation, while
equation (3) shows ℎ𝜏 as the LSTM function of current input embedding 𝑒𝜏 and
previous hidden state ℎ𝜏−1, with 𝑊𝑒𝑛𝑐 as learnable parameters shared across
all input time steps. Specifically, the current time step’s hidden state derives
from the previous hidden state and current input.

The context vector formed by input time steps 1 through 𝐿 is represented as
𝐻 = 𝑓𝑐𝑜𝑛𝑡𝑒𝑥𝑡(ℎ1, ℎ2, ..., ℎ𝐿), comprising implicit features from all input time
steps. During the prediction output stage, the hidden state ℎ′

𝜏 at the 𝜏 -th
output unit is computed as ℎ′

𝜏 = 𝑓𝐿𝑆𝑇 𝑀(𝑦𝜏−1, ℎ′
𝜏−1, 𝐻; 𝑊𝑑𝑒𝑐), where 𝑦𝜏−1 is the

previous output, ℎ′
𝜏−1 is the previous hidden state, 𝐻 is the context vector from

all input time steps, and 𝑊𝑑𝑒𝑐 represents learnable weight parameters in the
decoder.

The output at time step 𝜏 is 𝑦𝜏 = softmax(ℎ′
𝜏). From this, we derive

the predicted trajectory sequence for participant 𝑤𝑗 in time slot 𝑇𝑘 as
𝑇 𝑟𝑝𝑟𝑒,𝑗,𝑘

𝑟𝑎𝑤 = {𝑅(1)
𝑤𝑗,𝑇𝑘

, 𝑅(2)
𝑤𝑗,𝑇𝑘

, ..., 𝑅(𝜏)
𝑤𝑗,𝑇𝑘

, ..., 𝑅(𝐿)
𝑤𝑗,𝑇𝑘

}, where 𝑅(𝜏)
𝑤𝑗,𝑇𝑘

represents the
partition predicted for participant 𝑤𝑗 in sub-slot 𝑇 (𝜏)

𝑘 .
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3.1 Task Allocation Optimization Model
We define a visit indicator 𝑌 (𝜏)

𝑤𝑗 (𝑇𝑘, 𝑅𝑔) for participant 𝑤𝑗 regarding spatiotempo-
ral unit (𝑇 (𝜏)

𝑘 , 𝑅𝑔). If the model predicts that participant 𝑤𝑗 will visit partition
𝑅𝑔 in sub-slot 𝑇 (𝜏)

𝑘 , then 𝑌 (𝜏)
𝑤𝑗 (𝑇𝑘, 𝑅𝑔) = 1; otherwise, it is 0. Similarly, for each

task, we use binary decision variable 𝑋𝑖,𝑗 to indicate whether task 𝑠𝑖 is assigned
to participant 𝑤𝑗.

Since participants frequently revisit historically accessed locations, we analyze
features affecting prediction accuracy. We define a spatiotemporally relevant
visit probability matrix as input for the prediction model, corresponding to
𝑃 𝑘

𝑗 (1, ∶) through 𝑃 𝑘
𝑗 (𝐿, ∶) in the encoder portion of Figure 2.

The expected number of data samples collected by task 𝑠𝑖 in spatiotemporal
unit (𝑇 (𝜏)

𝑝𝑠𝑖
, 𝑅𝑞𝑠𝑖

) is calculated as shown in equation (8), and the total number of
data samples collected by task 𝑠𝑖 in time-partition pair (𝑇𝑝𝑠𝑖

, 𝑅𝑞𝑠𝑖
) is calculated

as shown in equation (9), where 𝐶(⋅) denotes a counting function.

For individual tasks, we define the data redundancy of a time-partition pair as
the ratio of collected data quantity to covered spatiotemporal units, calculated
as:

𝑑𝑟𝑠𝑖
(𝑇𝑝𝑠𝑖

, 𝑅𝑞𝑠𝑖
) =

𝐶𝑠𝑖
(𝑇𝑝𝑠𝑖

, 𝑅𝑞𝑠𝑖
)

∑𝐿
𝜏=1 𝑐𝑜𝑣𝑠𝑖

(𝑇 (𝜏)
𝑝𝑠𝑖

, 𝑅𝑞𝑠𝑖
)

The calculation premise is that the time-partition pair has already met the task’
s minimum sensing requirement. The coverage indicator 𝑐𝑜𝑣𝑠𝑖

(𝑇 (𝜏)
𝑝𝑠𝑖

, 𝑅𝑞𝑠𝑖
) in

equation (10) is computed as:

𝑐𝑜𝑣𝑠𝑖
(𝑇 (𝜏)

𝑝𝑠𝑖
, 𝑅𝑞𝑠𝑖

) = {1 if 𝐶𝑠𝑖
(𝑇 (𝜏)

𝑝𝑠𝑖
, 𝑅𝑞𝑠𝑖

) ≥ 1
0 otherwise

Multiple tasks in the system may exhibit spatiotemporal coverage overlap, mean-
ing multiple tasks contain identical time-partition pairs. To reduce data redun-
dancy caused by such overlap, we maximize the reuse of data sensed by par-
ticipant 𝑤𝑗 in the same spatiotemporal unit across multiple tasks. The reuse
degree is defined as the number of tasks in which the participant participates
in this spatiotemporal unit, calculated as:

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑤𝑗
(𝑇 (𝜏)

𝑘 , 𝑅𝑔) =
𝑀

∑
𝑖=1

𝑋𝑖,𝑗 ⋅ 𝑌 (𝜏)
𝑤𝑗 (𝑇𝑘, 𝑅𝑔)

The compensation for participant 𝑤𝑗 in a single spatiotemporal unit (𝑇 (𝜏)
𝑘 , 𝑅𝑔)

is defined as the sum of fixed unit compensation and discounted compensation
for overlapping tasks, with total compensation determined by data reuse degree:

𝑝𝑎𝑦𝑤𝑗
(𝑇 (𝜏)

𝑘 , 𝑅𝑔) = 𝑢 ⋅ [1 + (𝛾 − 1) ⋅ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑤𝑗
(𝑇 (𝜏)

𝑘 , 𝑅𝑔)]
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where 𝑢 is unit compensation and 𝛾 is a discount factor parameter (0 ≤ 𝛾 ≤ 1).
Participants receive higher compensation when their data is utilized by more
tasks. The compensation paid by task 𝑠𝑖 to participant 𝑤𝑗 in time-partition
pair (𝑇𝑝𝑠𝑖

, 𝑅𝑞𝑠𝑖
) is:

𝑝𝑎𝑦𝑠𝑖𝑤𝑗(𝑇 (𝜏)
𝑝𝑠𝑖

, 𝑅𝑞𝑠𝑖
) =

𝑝𝑎𝑦𝑤𝑗
(𝑇 (𝜏)

𝑝𝑠𝑖
, 𝑅𝑞𝑠𝑖

)
𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑤𝑗

(𝑇 (𝜏)
𝑝𝑠𝑖

, 𝑅𝑞𝑠𝑖
)

The total compensation expenditure for task 𝑠𝑖 across all time-partition pairs
is:

𝑝𝑎𝑦𝑠𝑖
=

|𝒯𝑠𝑖 |

∑
𝑝𝑠𝑖 =1

|ℛ𝑠𝑖 |

∑
𝑞𝑠𝑖 =1

𝐿
∑
𝜏=1

𝑁
∑
𝑗=1

𝑝𝑎𝑦𝑠𝑖𝑤𝑗(𝑇 (𝜏)
𝑝𝑠𝑖

, 𝑅𝑞𝑠𝑖
)

Our first optimization objective minimizes intra-task data redundancy by evenly
distributing collected data across spatiotemporal units in each time-partition
pair. The second objective maximizes data reuse for each participant in the same
spatiotemporal unit, thereby reducing inter-task redundancy. The optimization
objectives are:

Objective 1 (Minimize intra-task redundancy):

min
𝑀

∑
𝑖=1

|𝒯𝑠𝑖 |

∑
𝑝𝑠𝑖 =1

|ℛ𝑠𝑖 |

∑
𝑞𝑠𝑖 =1

𝑑𝑟𝑠𝑖
(𝑇𝑝𝑠𝑖

, 𝑅𝑞𝑠𝑖
)

Objective 2 (Maximize inter-task reuse):

max
𝑁

∑
𝑗=1

𝐾
∑
𝑘=1

𝐿
∑
𝜏=1

𝐺
∑
𝑔=1

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑤𝑗
(𝑇 (𝜏)

𝑘 , 𝑅𝑔)

Subject to: 1. Budget constraint: 𝑝𝑎𝑦𝑠𝑖
≤ 𝐵𝑠𝑖

for each task 𝑠𝑖 2. Quality con-
straint: 𝐶𝑠𝑖

(𝑇𝑝𝑠𝑖
, 𝑅𝑞𝑠𝑖

) ≥ 𝐿 for each time-partition pair 3. Participant capacity:

∑𝑀
𝑖=1 ∑|𝒯𝑠𝑖 |

𝑝𝑠𝑖 =1 ∑|ℛ𝑠𝑖 |
𝑞𝑠𝑖 =1 ∑𝐿

𝜏=1 𝑋𝑖,𝑗 ⋅ 𝑌 (𝜏)
𝑤𝑗 (𝑇𝑝𝑠𝑖

, 𝑅𝑞𝑠𝑖
) ≤ 𝜔 for each participant 𝑤𝑗

3.2 Task Allocation Optimization Model Solution
The problem we address is the optimization problem shown in equation (16).
We employ a genetic algorithm due to its fast execution and strong applicabil-
ity. However, considering the fine-grained spatiotemporal units, our problem
has a large solution space where individuals in the initial population may be far
from optimal solutions. To achieve good results at low cost, we propose a hy-
brid genetic algorithm that combines greedy algorithms with genetic algorithms.
Below we detail our proposed method.
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a) Allocation Matrix Representation. Our problem involves task alloca-
tion for redundancy reduction, represented using a matrix structure of binary
decision variables. Matrix rows and columns correspond to 𝑀 tasks and 𝑁
participants respectively, forming an 𝑀 ×𝑁 allocation matrix 𝑋 where element
𝑋𝑖,𝑗 ∈ {0, 1}. When element 𝑋𝑖,𝑗 = 1, task 𝑠𝑖 is assigned to participant 𝑤𝑗;
otherwise, it is not assigned. Figure 3 illustrates an example allocation matrix.

b) Population Initialization. The initial population is a set of chromosomes
at the search beginning, significantly affecting algorithm performance. Ran-
domly generated chromosomes may not always satisfy problem constraints. To
ensure population diversity, we introduce a greedy operator to improve individ-
uals that violate constraints, as shown in Algorithm 1.

c) Fitness Function. Our goal is to minimize data redundancy in task alloca-
tion—lower redundancy yields better fitness. Therefore, individual 𝑋𝑘’s fitness
relates to data redundancy:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑘) = 1
𝐷𝑅(𝑋𝑘)

where 𝐷𝑅(𝑋𝑘) represents the data redundancy produced by allocation scheme
𝑋𝑘, comprising intra-task and inter-task redundancy:

𝐷𝑅(𝑋𝑘) = 𝐷𝑅1(𝑋𝑘) + 𝐷𝑅2(𝑋𝑘)

The intra-task redundancy 𝐷𝑅1(𝑋𝑘) and inter-task redundancy 𝐷𝑅2(𝑋𝑘) are
calculated as:

𝐷𝑅1(𝑋𝑘) =
𝑀

∑
𝑖=1

|𝒯𝑠𝑖 |

∑
𝑝𝑠𝑖 =1

|ℛ𝑠𝑖 |

∑
𝑞𝑠𝑖 =1

𝑑𝑟𝑠𝑖
(𝑇𝑝𝑠𝑖

, 𝑅𝑞𝑠𝑖
)

𝐷𝑅2(𝑋𝑘) =
𝐾

∑
𝑘=1

𝐿
∑
𝜏=1

𝐺
∑
𝑔=1

max
𝑤𝑗∈𝒲

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑤𝑗
(𝑇 (𝜏)

𝑘 , 𝑅𝑔)

d) Selection. The selection operator passes higher-fitness individuals to the
next generation while eliminating lower-fitness ones. Since low-fitness individu-
als may still contain good genes, we use roulette wheel selection to determine
which individuals to preserve.

e) Crossover. We perform partially matched crossover operations row-wise on
the matrix. We randomly select two individuals as parents, set crossover points,
and exchange rows at these points to generate two new individuals. If new
individuals violate participant capacity constraints, we reset crossover points
until equation (17-3) is satisfied.

f) Mutation. To avoid local optima and accelerate convergence, we randomly
select mutation elements in the matrix, flipping“1”to“0”and vice versa, while
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verifying that mutated individuals satisfy minimum task requirements (equation
(17-2)).

g) Termination. The algorithm terminates when iteration count reaches the
maximum evolutionary generation.

Algorithm 2 presents our task allocation method execution process.

4 Experimental Analysis
For MCS task allocation, this paper comprehensively considers task spatiotem-
poral attributes and sensing quality requirements, participants’future trajectory
sequences, and other factors. We design a task allocation algorithm based on
genetic algorithms to minimize intra-task data redundancy and maximize inter-
task sensing data reuse, thereby reducing sensing costs. To evaluate our method,
we first compare prediction accuracy in Python, then verify task allocation al-
gorithm efficiency. Table 1 shows main parameter settings.

4.1 Comparison Algorithms

To evaluate our algorithm, we compare against two baseline algorithms (MTPS
and CAPR) under varying task quantities.

Fine-grained Multi-task Allocation (MTPS): This centralized algorithm
optimizes allocation through an iterative greedy process based on utility func-
tions under total budget constraints to maximize sensing quality. MTPS designs
reasonable incentive functions and performs fine-grained period partitioning,
representing a typical method for controlling intra-task data redundancy.

Conflict-Aware Participant Recruitment (CAPR): This method consid-
ers correlations between tasks and participants (including positive and nega-
tive correlations) for participant recruitment, proposing a three-stage heuristic
mechanism to reduce participant costs and maximize platform utility. Although
CAPR does not directly control inter-task redundancy, its correlation-based ap-
proach can indirectly reduce inter-task redundancy.

For CAPR’s correlation function between any two tasks 𝑠𝑖 and 𝑠′
𝑖, we measure

spatiotemporal coverage overlap rate as shown in equation (23). Since we ignore
participant reputation factors, we set reputation values to constant 1 in CAPR.

4.2 Evaluation Metrics

To verify effectiveness, we first analyze prediction accuracy. Then we evaluate
the task allocation algorithm using three metrics: task execution rate, data
redundancy rate, and sensing cost, analyzing how task quantity variations affect
these indicators.

a) Task Execution Rate: Defined as the ratio of successfully allocated tasks
(meeting minimum sensing quality) to total system tasks, ranging from 0 to 1.
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b) Data Redundancy Rate: Defined as the difference between total collected
data and effective data (spatiotemporal units covered by collected data), with
values in [0,1].

c) Average Sensing Cost: Defined as the ratio of total platform compensation
to allocated tasks, representing average cost per task.

4.3.1 Prediction Method Evaluation

To evaluate our trajectory prediction method, we compare against statistical
analysis-based prediction, Markov model-based methods, and short-term history
LSTM methods. Literature [20] uses statistical models to derive participant
passage probabilities, [23] employs semi-Markov processes, and [25] uses recent
historical trajectory sequences as input. In experiments, we divide a day into
𝐾 = 12 time slots and analyze accuracy for different subdivisions 𝐿 = 2, 4, 6, 12.

Figure 4 shows prediction accuracy across different 𝐿 values. Our method out-
performs the other three approaches. Markov and statistical methods show lower
accuracy, demonstrating LSTM’s self-learning capability improves prediction.
The short-term LSTM method is slightly less accurate than ours because we in-
corporate long-term mobility probability information for better generalization.
Our method achieves highest accuracy (~86.4%) at 𝐿 = 4, with all methods de-
creasing as 𝐿 increases because smaller prediction intervals increase trajectory
variability and reduce pattern clarity.

4.3.2 Task Allocation Method Evaluation

To demonstrate task quantity impact, we fix participant count at 15 with max-
imum participation limit of 30 spatiotemporal units. We first compare con-
vergence, then evaluate our algorithm against CAPR and MTPS across task
execution rate, redundancy rate, and average cost, repeating each experiment
10 times and averaging results.

Table 2 shows iteration counts. To illustrate convergence performance, we com-
pare our algorithm with an uninitialized version. As task quantity increases,
both algorithms require more iterations, but the uninitialized version needs sig-
nificantly more, demonstrating that our initialization algorithm (Algorithm 1)
accelerates solution speed.

Figure 5 shows task quantity impact on execution rate. Our algorithm achieves
higher execution rates than CAPR and MTPS. MTPS performs poorly because
while it reduces intra-task redundancy through periodic allocation, it ignores
inter-task spatiotemporal overlap, causing excessive duplicate assignments and
high costs that prevent selecting enough participants to meet minimum thresh-
olds. All three methods show decreasing execution rates as task quantity in-
creases because participants reach their spatiotemporal unit limits. Our algo-
rithm and CAPR perform similarly when task count is below 50 because low
inter-task overlap reduces our reuse maximization advantage. Above 50 tasks,
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our algorithm outperforms CAPR as increased overlap enables better data reuse
in overlapping regions. CAPR’s pre-allocation at task start times may become
suboptimal for subsequent tasks due to negative correlations or participant un-
availability.

Figure 6 shows task quantity impact on redundancy rate. Our algorithm
achieves lower redundancy than CAPR and MTPS because we simultaneously
control intra-task redundancy through fine-grained partitioning and maximize
data reuse across tasks, while MTPS only addresses intra-task redundancy
and CAPR only partially reduces inter-task redundancy through correlation.
As task quantity increases, our algorithm and CAPR show slowly increasing
redundancy rates while MTPS increases rapidly (reaching 30% vs our 22% at
high task counts) due to unchecked inter-task overlap. CAPR’s redundancy
increases more slowly than ours, possibly because it already generates more
intra-task redundancy at low task counts, and increased task overlap doesn’t
significantly worsen its performance.

Figure 7 shows task quantity impact on average cost. Below 40 tasks, all three
methods have similar costs. As task quantity increases, our algorithm and
CAPR costs decrease because greater spatiotemporal overlap enables higher
data reuse and lower compensation payments. CAPR achieves slightly lower
costs than ours at low task counts due to higher execution rates. MTPS costs
remain stable because without inter-task redundancy control, budget constraints
prevent completing more tasks as task quantity increases.

5 Conclusion
Spatiotemporal coverage overlap among multiple tasks in mobile crowd sens-
ing systems may cause duplicate data collection and redundancy problems.
This paper proposes a task allocation method that reduces both intra-task
and inter-task data redundancy. We first design a participant mobility trajec-
tory prediction method, then propose a genetic algorithm-based task allocation
approach considering temporal and spatial overlap among tasks. Simulation
results demonstrate the proposed method effectively reduces data redundancy
within and between tasks. Future work should consider additional factors affect-
ing participant behavior and availability, and explore new optimization methods
and theoretical foundations.
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