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Abstract

Deep Reinforcement Learning (DRL) can be widely applied in the field of ur-
ban traffic signal control; however, in existing research, the vast majority of
DRL agents utilize only the current traffic state for decision-making, resulting
in limited control effectiveness under conditions of significant traffic flow varia-
tion. This paper proposes a DRL signal control algorithm incorporating state
prediction. First, a concise and efficient traffic state representation is designed
using one-hot encoding. Then, Long Short-Term Memory (LSTM) networks
are employed to predict future traffic states. Finally, the agent makes optimal
decisions based on both the current and predicted states. Experimental results
on the SUMO (Simulation of Urban Mobility) simulation platform demonstrate
that under various traffic flow conditions for both single and multiple intersec-
tions, the proposed algorithm achieves the best performance compared with
three typical signal control algorithms across metrics including average waiting
time, travel time, fuel consumption, and CO2 emissions.

Full Text

0 Introduction

With the improvement of living standards, vehicle ownership continues to grow,
and urban traffic congestion has become increasingly severe. Traffic signal con-
trol is the most direct and cost-effective approach to improve road traffic effi-
ciency and alleviate congestion. SCATS[1] and SCOOT|[2] are currently widely
used adaptive traffic signal control systems. The former selects signal timing
plans, while the latter utilizes simplified traffic models to solve for optimal signal
control strategies. However, the establishment of simplified models relies heav-
ily on assumptions and empirical equations, making such systems less effective
for complex and variable real-world traffic scenarios.
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In recent years, with the development of artificial intelligence technology, rein-
forcement learning[3] (RL), particularly data-driven deep reinforcement learning,
has demonstrated excellent application prospects in traffic signal control.

Reinforcement learning is a “trial-and-error” learning method that learns opti-
mal policies through interaction with the environment. In traffic signal control
applications, one or several intersections can be viewed as an agent. The agent
observes the road network state and makes decisions, learning optimal signal
timing schemes by maximizing the reward feedback from the environment. In-
spired by the working mode of the human brain, deep learning[4] (DL) can
combine low-level features to form more abstract high-level features, effectively
handling high-dimensional data. Deep reinforcement learning (DRL) combines
DL’ s strong perception capabilities with RL’ s strong decision-making capabil-
ities, making it highly suitable for traffic signal control tasks.

In 2010, Arel et al.[5] first introduced DRL into the field of traffic signal control,
using neural networks to approximate Q-values but lacking experience replay
and target network components. Liu et al.[6] proposed the 3DQN__{PSER} al-
gorithm, which uses Priority Sequence Experience Replay (PSER) to update
the priority of sequential samples in the experience pool, enabling the agent
to obtain preceding samples similar to the current traffic state and improving
training efficiency. Wei et al.[7] proposed the Intellilight model, which uses a
phase-gate structure to set up independent learning channels, partitions the ex-
perience pool according to phases and actions, and conducts experiments with
real traffic data. Zheng et al.[8] proposed the FRAP model, which leverages
the competitive relationships between different signal phases to achieve univer-
sality under symmetric situations such as flipping and rotation in traffic flow.
Jin et al.[9] used Threshold Lexicographic Ordering (TLO) to adaptively select
optimization objectives and compared the improvement effects of various func-
tion approximation methods based on the SARSA algorithm. Tan et al.[10] di-
vided large-scale road networks into several sub-regions, using Per-action DQN
or Wolpertinger DDPG for control in each region, and transmitted the learning
policies of all agents to a global agent to achieve global learning. These DRL sig-
nal control methods are essentially first-order Markov decision processes, where
agents make decisions based only on the current state, making it difficult to
achieve optimal control effects in complex and variable real-world traffic scenar-
ios. If future states can be reasonably predicted, agents can anticipate possible
traffic situations in advance and learn better signal control strategies.

Xu et al.[11] proposed the DRQN model, which integrates hidden states across
8 time steps into the DRL agent input, but this significantly increases state
dimensionality and can easily lead to neural network overfitting. Recurrent
neural networks have short-term memory capabilities. Chu et al.[12] adopted
LSTM networks in DRL agents to extract dynamic traffic information, but these
networks did not directly predict future traffic states.

This paper proposes a DRL signal control algorithm called DQN__{SP} that
combines state prediction. The main features are: 1) By introducing explicit
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traffic state prediction, the DRL agent makes optimal decisions using both cur-
rent and future states. 2) The agent’ s state is carefully designed to include the
most important traffic information with small data volume, making it easy to
predict. The effectiveness and feasibility of the proposed algorithm are verified
under various traffic flow conditions at single and multiple intersections, with ve-
hicle flow data simulating real-world peak and off-peak scenarios, demonstrating
engineering application value.

1 Research Background

This section introduces the basic concepts and methods of reinforcement learn-
ing and deep reinforcement learning, as well as DRIL-based traffic signal control
algorithms.

1.1 Reinforcement Learning

Reinforcement learning is the third category of machine learning methods along-
side supervised and unsupervised learning. An agent learns the optimal policy
to achieve a certain goal through continuous interaction with the environment.
The Markov Decision Process is a theoretical framework for achieving goals
through interactive learning, which is flexible and abstract and can well explain
the basic process of reinforcement learning. The agent executes optimal actions
with a certain probability according to the current policy and interacts with the
environment. The action value function ¢™ (s, a) represents the expected return
for the agent taking action a in state s, expressed as:

q"(s,a) = EL[G|S, = s, A, = a] = E, VRypir | Sy =5,4,=a

k=0

After interacting with the environment, the agent learns the optimal policy.
The optimal action value function ¢*(s, a) represents the maximum return value
obtained by taking action a in state s. According to the Bellman optimality
equation:

q'(s,a) =E |:Rt+1 Jr’ynzz/zxq*(stﬂ,a’) | Sy =s, 4, = a]

After continuously iterating the optimal action value function, the optimal policy
is obtained:

“(als) 1 if a = argmax,. 4 ¢*(s,a)
m™*(a|s) =
0 otherwise

1.2 Deep Reinforcement Learning

DRL is the combination of RL and DL and is one of the advanced learning
frameworks in current control systems. In 2013, DeepMind[13] proposed DQN.
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Unlike Q-Learning, which uses a table to store all Q-values, DQN uses experi-
ence replay to update target values. Samples obtained from agent-environment
interactions (s, a,r,s’) are stored in an experience pool. Mini-batch samples
are uniformly sampled from the experience pool, and deep neural networks are
trained using stochastic gradient descent to approximate Q-values. Random
sampling can break the strong correlation between samples, making training
convergence stable. DQN uses the same network to select actions and calculate
target Q-values, which are interdependent during iteration, which is not con-
ducive to algorithm convergence. To solve this problem, DeepMind proposed
Nature DQN][14], which uses two networks: the current network @ for action
selection and parameter updating, and the target network @@~ for calculating
target Q-values. The parameters of the Q~ network do not need real-time itera-
tive updates but are copied from the current network at regular intervals. The
optimization objective of the current optimal action value function is expressed
as:
y=r+ymaxQ(s’,a’sw")
a

where w™ represents the parameters of the target value network.

The above algorithms obtain target Q-values directly through the greedy
method, which can quickly make Q-values approach the optimization target
but easily leads to overestimation. To alleviate the overfitting problem of the
model, Van Hasselt et al.[15] proposed Double DQN,; which first finds the
action corresponding to the maximum Q-value in the current network @, and
then substitutes this action into the target network @~ to calculate the target
Q-value. The optimization objective is expressed as:

y=r+7Q(s";argmax Q(s’,a’;w);w")

The above algorithms train deep Q-networks through experience replay, uni-
formly sampling samples in the experience pool. However, different samples
have different TD errors, and their impact on backpropagation varies. To ad-
dress this issue, Schaul et al.[16] proposed the prioritized experience replay al-
gorithm based on DDQN, assigning priorities proportional to the absolute TD
error of samples and storing these priorities in the experience pool. During
training, samples with higher priorities are more likely to be sampled, avoid-
ing worthless iterations and improving algorithm convergence speed. Wang
et al.[17] optimized the neural network structure and proposed Dueling DQN,
which divides the Q-network into two parts: a value function and an advantage
function.

1.3 DRL-Based Traffic Signal Control

DRL-based signal control methods do not require prior knowledge of the sce-
nario but learn optimal policies through continuous interaction with the traffic
environment. In this process, an intersection or road network is viewed as an
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agent, the state is a description of the traffic environment, actions are changes in
traffic signals, and rewards measure the change in traffic efficiency after actions.

Existing DRL signal control algorithms differ significantly in state, action, and
reward definitions. State definitions fall into two categories: vehicle-based
representations (such as real-time images[7,18] and DTSE forms including
vehicle position or speed information[6,19,20]) and feature-based value vector
representations (such as queue length[7,19,21], cumulative delay[19,20], and
waiting time[7,19]).  Action definitions include selecting a possible green
light phase[6,20,21], maintaining the current phase or switching to the next
phase[7,11,19], or changing phase duration[9,22]. The state is a feature matrix
or vector of the environment, the action is a discrete selection vector, and
the reward is a scalar value related to traffic data. Reward definitions mainly
consider queue length[6,7,19,20], delay[7,19,20,22], etc. DRL algorithms are
mainly divided into value function-based DQN][6,7,11,19,20], policy-based
DDPGJ10,23], AC framework-based A2C[12,18], A3C[24], etc.

Some studies have considered the temporal correlation of traffic flow. Yu et
al.[23] added vehicle speed to the state representation, and Wei et al.[7] fed
real-time images representing vehicle positions into CNN networks. These two
methods reflect the dynamic characteristics of traffic flow through reasonable
state design. Chu et al.[12] used LSTM networks to fit Q-values, leveraging the
network’ s memory capabilities to learn trends in traffic information changes,
but did not directly predict future traffic states. To overcome DQN’ s inability
to remember historical information before the current input, Xu et al.[11] pro-
posed the DRQN model, which inputs the current state and several historical
states into the agent, which can be viewed as an n-order Markov decision pro-
cess. Liu et al.[6] used PSER to update the priority of sequential samples in the
experience pool, making sample data before the current moment more likely to
be sampled. The above methods more or less consider the temporal characteris-
tics of traffic flow but do not directly predict traffic states because microscopic
state dimensionality is large, easily leading to the curse of dimensionality, and
it is difficult to train satisfactory results when combined with DRL.

2 Deep Reinforcement Learning Traffic Signal Control Al-
gorithm with State Prediction

This paper combines state prediction with the DQN algorithm in DRL, using
one-hot encoding to carefully design microscopic states and LSTM to predict
future states. The agent makes decisions based on both current and predicted
states. This section defines the state, action, and reward, and introduces the
network model of the proposed algorithm DQN_ {SP}.

2.1 State Definition

This paper utilizes both current and predicted traffic states for decision-making,
making state design particularly critical. Based on the DTSE method, non-
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uniform quantization and one-hot encoding are used to design the state vector.
The intersection used for simulation in this paper is a bidirectional six-lane
intersection with a length of 500 meters. Along the direction of vehicle travel,
the left lane is a left-turn lane, the middle lane is a through lane, and the
right lane is a through plus right-turn lane. This paper divides lanes into cells
according to a certain length ratio. Figure 1 shows the cell design for the west
entrance road of the intersection as an example. The two right lanes are treated
as a whole for division, while the left left-turn lane is divided separately. In
this way, the lanes in four directions of an intersection are divided into 80 cells.
The state is represented by whether there is a vehicle in each cell. If there is a
vehicle, the state value is 1; otherwise, it is 0.

As can be seen from the cell design diagram of the west entrance road in Figure 1,
10 cells are divided with 7 meters as the unit near the intersection, each cell can
only accommodate one vehicle, which can accurately reflect the vehicle distribu-
tion. The cell farthest from the intersection is 230 meters long. Compared with
methods that use real-time images[18] or uniformly divide lanes[19] to represent
states, this method enables the agent to pay more attention to traffic conditions
near the intersection, reduces data dimensionality, and shortens computation
time. Using whether there is a vehicle in each cell as the state simplifies traf-
fic information and can reflect the main features of the environment, namely
the vehicle distribution near the intersection. Additionally, predicting this one-
hot encoded state can be viewed as a binary classification problem, which can
improve prediction accuracy compared to traditional regression prediction.

2.2 Action Definition

The agent needs to select appropriate actions to guide traffic based on traffic
states. In this paper, the action is defined as selecting a possible signal phase.
The action set A = {NSG,NSLG,EWG, EW LG} represents green light for
straight and right-turn in north-south direction, green light for left-turn in north-
south direction, green light for straight and right-turn in east-west direction,
and green light for left-turn in east-west direction, respectively. The minimum
duration of each phase is set to 10 seconds. For safety, there is a 3-second yellow
light during the transition between green and red lights.

2.3 Reward Definition

The agent observes the environment state s, at time ¢, executes action a,, and
receives feedback r, from the environment, which measures the quality of the
action and is critical for DRL convergence and effectiveness. In this paper,
the reward r, is defined as the difference in queue lengths of all lanes between
adjacent time steps:

e =o(q — qy1)

where g, represents the sum of queue lengths of all lanes in the road network at
time ¢, g, represents the sum of queue lengths at the next time step, and « is
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a coefficient determined through multiple experiments.

2.4 DRL Signal Control Algorithm with State Prediction (DQN__{SP})

The proposed algorithm DQN_ {SP} in this paper uses LSTM to predict fu-
ture microscopic state s, and concatenates it with the current state s as an
augmented state input to the DRL agent. The DRL algorithm uses traditional
DQN[13], aiming to verify the effectiveness and feasibility of the algorithm after
combining state prediction. The network structure of DQN_{SP} is shown in
Figure 2. The optimization objective of the optimal action value function is
expressed as:

y=r+ymaxQ(s,,s,a’;w")
a/

The algorithm flow of DQN__{SP} is as follows:

1. Initialize deep Q-network, LSTM network, and experience pool
2. For episode = 1 to M do
3. Initialize road network environment and import traffic flow data
4. Fort =1to T do
5. Observe current state s,
6. Use LSTM to predict microscopic state s, after n time steps
7. Concatenate current state and predicted state, then input to DQN agent
8. Agent executes action a, based on e-greedy policy
9. Execute action a;, observe reward r; and next state s,
10. Store transition (s, a,, 7y, Syi1s Sp) in experience pool
11. End for
12. Calculate optimization objective according to equation (7), update deep
Q-network using mean squared error loss function
13. Update LSTM network parameters using binary cross-entropy loss func-
tion
14. End for

3 Experimental Results and Analysis

This section first introduces the experimental simulation environment and algo-
rithm hyperparameters, then introduces the benchmark algorithms FTC, SOTL,
and DQN, and finally verifies the effectiveness of algorithm DQN_ {SP} under
various traffic flow conditions at single and multiple intersections.

3.1 Simulation Environment and Hyperparameter Settings

The Traci (Traffic Control Interface) can interact online with various develop-
ment environments to achieve traffic signal control. This paper uses Ubuntu
with GeForce RTX 2080 GPU as the hardware environment. The algorithm is
implemented through the deep learning framework Keras and conducts simula-
tion experiments under SUMO v1.6.0.
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Intersection Settings: This paper conducts simulations in two scenarios: single
intersection and multiple intersections. The intersection consists of 4 perpen-
dicular roads, each 500 meters long, with bidirectional six lanes. Along the
direction of vehicle travel, the left side is the left-turn lane, the middle is the
through lane, and the right side is the through plus right-turn lane. The mul-
tiple intersections scenario is a 2$x$2 grid network composed of 4 identical
intersections, with the same intersection configuration as the single intersection
scenario.

Traffic Flow Settings: The vehicle generation method has an important impact
on traffic signal control. In this paper, vehicle generation follows a Weibull
distribution, with the probability density function:

k=1 _(p/)k
f<x;A,k>:{’§<> N >0

>|8

0 r <0

where X is the scale parameter set to 1, and k is the shape parameter set to 2.
The majority of vehicles enter the road network within a certain period, simu-
lating real-world peak and off-peak scenarios. Vehicles enter the road network
from any entrance, with a 75% probability of going straight, 12.5% probability
of left-turn, and 12.5% probability of right-turn. Vehicle length is 5 meters,
acceleration is 2m/s?, minimum spacing between vehicles is 2.5 meters, entry
speed is 36 km/h, and maximum speed is 50 km/h.

Hyperparameter Settings: Referring to literature [7,9,19] and combined with ex-
periments, hyperparameters are set as follows. The number of training episodes
is set to 100. The algorithm uses DNN to evaluate Q-values, with 5 hidden lay-
ers, width of 400, Adam optimizer, learning rate of 0.001, batch size of 80, 800
iterations per episode, and mean squared error as the loss function. The predic-
tion network uses 6 LSTM units, each with 3 LSTM layers, 80 neurons, Adam
optimizer, batch size of 128, 1 iteration per episode, and binary cross-entropy as
the loss function. The RL experience pool size is minimum 600 and maximum
50000, discount factor is 0.75, and e-greedy algorithm is used to output actions.

3.2 Experimental Evaluation and Results Analysis

This paper conducts experiments in both single intersection and multiple inter-
sections scenarios. For the single intersection, the simulation duration is 5400
seconds, with 500, 1000, and 1500 vehicles entering the road network, corre-
sponding to low, medium, and high traffic low conditions, respectively. For
multiple intersections, the simulation duration is also 5400 seconds, with 2000
and 3000 vehicles entering the road network, corresponding to low and high
traffic flow conditions, respectively. For each traffic flow condition, 20 groups of
traffic flow data are generated using random seeds. The average waiting time,
average travel time, average fuel consumption, average CO2 emissions, and av-
erage cumulative reward of vehicles under the 20 groups of data are used as
performance metrics. Among them, average waiting time mainly comes from
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the time consumed when vehicles are queued, which has the strongest correlation
with the defined reward and is the primary metric, while average travel time,
fuel consumption, and CO2 emissions are secondary metrics. The proposed al-
gorithm predicts states after 1, 5, and 10 time steps, denoted as DQN_ {SP}1,
DQN_{SP}5, and DQN_{SP}{10}, respectively. To verify the effectiveness of
prediction, DQN{SP} is compared with the following benchmark algorithms:

Fixed-time Control (FTC)[25]. FTC predefines a set of timing plans based
on the classic Webster timing method and is widely used in real-world traffic
scenarios.

Self-organizing Traffic Lights (SOTL)[26]. When the queue length in the red
light direction reaches a threshold, the signal in that direction turns green. If
there are too many vehicles within a certain distance in the green light direction,
the green light duration is extended.

DQN-based Traffic Signal Control. This uses the same DQN algorithm[13] as
the proposed DQN__{SP}, with the only difference being that it does not predict
future states, so the network input dimension is halved. Other hyperparameter
settings and definitions of state, action, and reward are the same as DQN_ {SP}.

Figure 3 shows the comparison of cumulative rewards and average vehicle wait-
ing times during training and testing under medium traffic flow conditions at
a single intersection. Figure 3(a) presents the cumulative reward comparison
between DQN__{SP} and DQN during training under medium traffic flow con-
ditions at a single intersection, showing little difference between the two. This
indicates that adding state prediction does not reduce algorithm convergence
speed or weaken algorithm stability. Figure 3(b) shows the average vehicle
waiting time comparison between DQN_ {SP} and the three benchmark algo-
rithms. In the initial training stage, due to too few samples in the experience
pool, the agent has not yet learned the correct control strategy, so the average
waiting time increases significantly. As training progresses, intersection traffic
conditions gradually improve and eventually stabilize.

The trained model is tested on 20 groups of randomly generated traffic flow
data, with average performance shown in Table 1. It can be seen that whether
predicting states after 1, 5, or 10 steps, DQN_ {SP} performance is superior
to FTC, SOTL, and DQN. Moreover, DQN_ {SP}5 shows the most improve-
ment in the primary metric, reducing average vehicle waiting time by 6.06%
and increasing cumulative reward by 5.61% compared to DQN. However, in
the three secondary metrics of travel time, fuel consumption, and CO2 emis-
sions, DQN__{SP}1 shows the most significant improvement. Figure 3(c) shows
the cumulative reward comparison between DQN__{SP}5 and DQN in 20 tests,
and Figure 3(d) shows the average vehicle waiting time comparison between
DQN_ {SP}5 and the three benchmark algorithms. The results show that com-
pared with traditional FTC and SOTL signal control methods, DRL-based meth-
ods are significantly effective in reducing vehicle waiting time, and DQN_ {SP}5
outperforms DQN in 18 out of 20 tests.
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This paper also conducts experiments in the multiple intersections scenario,
where each intersection signal is controlled by one agent. This paper aims
to verify the effectiveness of DRL combined with state prediction, so a simple
multi-agent collaboration strategy is used: a spatial discount factor is adopted to
weaken rewards from other intersections, with the current intersection reward
weight at 0.5, neighbor intersections at 0.2, and diagonal intersections at 0.1.
The simulation duration is 5400 seconds, with 2000 and 3000 vehicles entering
the road network, corresponding to low and high traffic flow, respectively. Tables
4 and 5 list the average performance of algorithms in 20 tests. Under high traffic
flow conditions, SOTL performs poorly because vehicle-driven control methods
are difficult to work when traffic flow is highly random. Under low traffic flow
conditions, DQN_ {SP}5 shows the best improvement effect, reducing average
waiting time by 8.82% and increasing cumulative reward by 8.11% compared to
DQN. However, under high traffic flow conditions, DQN__{SP}_ {10} shows the
best improvement effect, reducing average waiting time by 4.92% and increasing
cumulative reward by 4.59%. This shows that as traffic volume increases, it is
necessary to predict states further into the future to more effectively learn traffic
variation trends and improve traffic capacity.

In summary, compared with benchmark algorithms, DQN_ {SP} can learn bet-
ter signal control strategies in both single and multiple intersection scenarios,
effectively alleviating traffic congestion and reducing fuel consumption and pol-
lution emissions. As traffic volume increases, predicting states further into the
future is needed to achieve better control effects.

4 Conclusion

This paper leverages the temporal correlation of traffic data and proposes a
deep reinforcement learning traffic signal control algorithm DQN_ {SP} that
combines state prediction. By extracting high-dimensional traffic features and
predicting future microscopic states, better signal control effects are achieved
in single intersections, multiple intersections, and various traffic flow conditions.
Compared with FTC, SOTL, and DQN algorithms, DQN_ {SP} shows improve-
ments in average waiting time, travel time, fuel consumption, and CO2 emis-
sions. Future work will further investigate combining state prediction with more
advanced DRL algorithms (such as TD3, SAC, etc.) and validate with real traf-
fic data.
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