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Abstract
Early detection, early diagnosis, and early intervention constitute a consen-
sus in the educational rehabilitation of children with autism. However, lim-
itations of traditional identification and diagnostic methods, together with a
shortage of professionals, frequently result in children with autism missing the
optimal intervention period. To ameliorate this situation, machine learning, by
virtue of its advantages in objectivity, accuracy, simplicity, and flexibility, has
been progressively applied to early prediction, screening, diagnosis, and assess-
ment process management of autism in recent years, accumulating relatively
substantial achievements. Nevertheless, machine learning also demonstrates
limitations in research subject selection, classification data acquisition, and the-
oretical model application. Future research should promote the establishment
of tracking databases for perinatal and neonatal pathophysiological information
and standardized model classification index systems, while continuing algorith-
mic optimization and accelerating the translation of theoretical achievements in
intelligent autism identification and diagnosis into practical applications.
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Abstract: Early detection, diagnosis, and intervention represent the consen-
sus approach for educational rehabilitation of children with autism spectrum
disorder (ASD). However, limitations of traditional identification and diagnos-
tic methods, coupled with a shortage of qualified professionals, often result in
missed optimal intervention windows for autistic children. To address this chal-
lenge, machine learning has been increasingly applied in recent years to early
prediction, screening, diagnosis, and evaluation process management of autism,
leveraging its advantages of objectivity, accuracy, simplicity, and flexibility.
This approach has yielded substantial research成果. Nevertheless, machine learn-
ing also exhibits limitations in research participant selection, classification data
collection, and theoretical model application. Future research should focus on
establishing tracking databases for perinatal and neonatal pathophysiological
information while developing standardized model classification index systems.
Simultaneously, continued algorithm optimization is needed to accelerate the
translation of theoretical achievements in intelligent autism identification and
diagnosis into practical applications.

Keywords: Machine learning, Autism, Early identification and diagnosis, Sys-
tematic review

1. Introduction
In the era of artificial intelligence, the deep integration of AI and special edu-
cation has become a significant trend in educational development. Numerous
researchers have dedicated themselves to matching AI technologies with the
needs of children with different types and severity levels of special educational
needs, providing more personalized and precise educational rehabilitation and
medical services to improve their quality of life and learning outcomes. As tech-
nology matures, autism spectrum disorder (ASD)—a condition with large af-
fected populations and complex etiology—has garnered widespread attention in
the intelligent education community. Research has focused on implementing ef-
fective interventions for autism, with scientific and accurate early identification
and diagnosis serving as the prerequisite for educational intervention, inevitably
becoming a critical issue that must be addressed in both research and practice.

According to the U.S. Centers for Disease Control and Prevention, the preva-
lence of ASD in 2021 was 1 in 44, representing a nearly 240.9% increase from
the 1 in 150 rate observed between 2000-2002. Faced with rising prevalence
and unclear pathogenesis, autism has evolved into a major global public health
challenge. Active early prevention, identification, and intervention constitute
essential responses to this challenge. However, large-scale risk screening specifi-
cally for ASD populations remains rare, and ASD diagnosis primarily relies on
external behavioral observation and subjective judgment by evaluators. The
conventional diagnostic process involves assessors using standardized diagnostic
tools (such as DSM-IV/DSM-V and ICD) to evaluate children through psycho-
logical and educational measurements, medical examinations, parent/guardian
interviews, and daily observations. This process is time-consuming and demands
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extensive professional theoretical knowledge and clinical experience from evalu-
ators. The reality is that domestically, very few professionals possess diagnostic
qualifications. Even in countries with relatively advanced special education de-
velopment, such as the United States, only 8% of pediatricians are qualified to
diagnose ASD, creating a severe shortage of professional diagnostic services. Re-
search shows that while behavioral symptoms of autistic children can manifest
as early as 12-24 months, the average age of diagnosis for typical autism is after 4
years, with severe autism diagnosed between 5.6-8.6 years and high-functioning
autism often delayed until after 11 years, forcing children into a painful “wait-
to-fail”situation. Moreover, this entirely external behavior-based and subjec-
tive diagnostic approach incorporates limited reference variables, lacks objective
and consistent neuroscientific indicators, and frequently results in misdiagnosis
and missed diagnoses, causing some children to be incorrectly labeled as autis-
tic, which seriously violates the original purpose of assessment and diagnosis.
Most concerningly, these issues severely hinder early intervention for individuals
with autism, delay the golden period for educational rehabilitation, and impose
tremendous psychological and economic burdens on autistic children and their
families. Finally, even after diagnosis is completed, subsequent etiological and
symptomatic research based on these patients remains retrospective analysis,
making it difficult to comprehensively and objectively summarize ASD behav-
ioral characteristics, extract markers that can represent underlying physiological
mechanisms, and screen out features with high clinical predictive relevance. This
places autism prevention and treatment efforts in a passive position.

Machine learning (ML), as the core of artificial intelligence, is a technology that
automatically analyzes data to obtain patterns and uses these patterns to predict
unknown data. The rules automatically generated by this technology are not
influenced by individual subjective experience, which is significant for improv-
ing classification specificity, sensitivity, accuracy, and efficiency. Furthermore,
ML can extract subtle and potentially useful information from large datasets to
create predictive or classification models for current problems, making it particu-
larly suitable for gaining insights into the internal patterns of complex problems
and helping to identify possible causes early on. Scholars both domestically and
internationally have applied ML to the classification, diagnosis, treatment, and
prognosis management of various mental and neurological disorders, achieving
numerous valuable results in empirical research on prediction, identification, and
auxiliary diagnosis for autism populations, though domestic reports in this area
remain relatively scarce. This article reviews the application of machine learn-
ing in early identification and diagnosis of autistic children, aiming to provide
references for domestic research and practice.

2. Research Methods
We employed the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA), an internationally recognized systematic literature review
and meta-analysis methodology, to determine the composition of included stud-
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ies. This method comprises four literature screening stages with 27 review items
total. The four stages are identification, screening, eligibility, and inclusion,
with review items covering literature titles, abstracts, research objectives, meth-
ods, and results. Considering the rapid development and 更新换代 of computer
science technology in recent years, this review selected literature from the past
five years on machine learning applications in early identification and diagnosis
of autistic children, with a specific search date range from January 1, 2016, to
April 29, 2021. English search terms included: “Autis,”“Prediction,”“Early
Screening/ Early Detection/ Early Identification/ Early Recognition,”“Early
Diagnosis,”and “Machine Learning/ Artificial Intelligence.”We searched five
comprehensive foreign databases: EBSCO, Elsevier Science Direct, SAGE, Web
of Science, and Springer, limiting the search scope to peer-reviewed journals,
yielding 520 articles. An additional 50 articles were obtained through reference
citation searching, totaling 570 articles. The authors jointly reviewed titles,
abstracts, and full texts, removing duplicates and papers that did not meet
established criteria, ultimately obtaining 60 articles for inclusion in the review
(see Figure 1).

Figure 1. PRISMA Literature Screening Flowchart

[Note: The figure shows the screening process from 570 total records through
various exclusion stages to 60 final included studies]

Inclusion criteria: (1) English-language empirical journal articles with full
text available and 不少于 3 pages; (2) Study participants included at least one
child with ASD (in this paper,“children”are defined according to the UN Con-
vention on the Rights of the Child as individuals under 18 years old) with clear
statistical variables (age) or “child”designation; (3) Studies contained clear
research questions, methods, and conclusions with detailed data support; (4)
Research focused on early identification or diagnosis of ASD children, with ex-
plicit indication of machine learning technology use for classification in abstracts
or keywords.

Exclusion criteria: (1) Non-English literature (Korean, German, Spanish,
etc.), reviews, book chapters, conference proceedings, patents, and articles 少于
3 pages; (2) Study populations consisting entirely of adults over 18, elderly indi-
viduals, or other special groups; (3) Research questions, designs, or conclusions
that were ambiguous without data support; (4) Studies on mental disorders
unrelated to ASD or those not applying machine learning methods. These crite-
ria were established before literature searching to reduce potential bias during
screening.

Finally, based on the“categorization consistency formula”proposed by Xu Jian-
ping and Zhang Houcan (2005), we assessed coding reliability. The first two au-
thors jointly calculated that inter-rater reliability for included literature ranged
from 0.50 to 1.00, with overall categorization consistency at 0.812; coding reli-
ability coefficients ranged from 0.75 to 0.80, with an overall coding reliability
coefficient of 0.759, indicating fair to good consistency levels.
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3. Data Types and Collection for Machine Learning-Based
Autism Identification and Diagnosis
Machine learning can discover hidden patterns in data through abstraction, mak-
ing data the foundational factor in model construction. The first step in model-
ing is data collection.

3.1 Data Composition

Children with ASD exhibit high heterogeneity and weak data structure, so clas-
sification model raw data generally consists of binary classification data. In
terms of participant composition, researchers typically establish both experimen-
tal and control groups, selecting children with ASD and matched children with
other developmental disorders or typically developing (TD) children matched
for chronological age and mental age. Common types of children with disorders
include Attention Deficit Hyperactivity Disorder (ADHD), Developmental De-
lay (DD), Childhood Apraxia of Speech (CAS), and Other Neurodevelopmental
Disorders (OND). Some studies also categorize children into High Risk (HR)
and Low Risk (LR) groups based on future autism risk levels. Regarding age
range, studies cover various developmental stages, with the earliest screening
and diagnosis timing basically within 3 years of age, during infancy and early
childhood. Autism risk prediction research occurs even earlier, generally be-
fore 1 year of age, with some studies extending to the perinatal and neonatal
periods, though such research remains rare. In terms of participant sources,
studies involve dozens of countries and regions including the United States,
United Kingdom, France, China, Iran, New Zealand, India, Italy, South Korea,
Spain, and Australia. Common data collection channels include public autism
research databases (see Table 1), hospitals, special education schools or reha-
bilitation centers, and a small number of online search engines (such as Yahoo
Answers, Google Search).

Sample sizes vary dramatically across studies, ranging from dozens to thou-
sands, with studies exceeding 300 participants typically drawing data from pub-
lic databases. Public autism research databases are open resources established
by researchers to facilitate collaborative research across different disciplines and
professions. Their large-scale data storage provides tremendous convenience for
autism identification and diagnosis using machine learning. Taking the most
frequently used ABIDE database as an example, it integrates brain structure
and functional imaging research data on ASD and TD children collected from
multiple laboratories worldwide, freely available to researchers. Two phases of
data have been collected, with over 2,200 participants, and registered researchers
from North America, Europe, Africa, Asia, and other regions.

Table 1. Public Autism Research Databases

chinarxiv.org/items/chinaxiv-202204.00033 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00033


No. Chinese Name English Name (Abbreviation)
1 Autism Brain

Imaging Data
Exchange Database

Autism Brain Imaging Data Exchange
(ABIDE)

2 Autism Genetic
Resource Exchange
Database

Autism Genetic Resource Exchange
(AGRE)

3 Boston Autism
Consortium

Boston autism consortium (AC)

4 Autism Treatment
Network

Autism Treatment Network (ATN)

5 Simons Simplex
Collection Database

Simons Simplex Collection (SSC)

6 Simons Variation in
Individuals Project
Database

Simons Variation in Individuals Project
(Simons VIP)

7 University of
California Irvine
Repository

University of California Irvine Repository
(UCI)

The application of machine learning technology has overcome the limitations
of traditional retrospective research, enabling autism identification and diagno-
sis at younger ages. Hidden patterns extracted through complex computations
can also be applied to perinatal and neonatal examinations to help identify
high-risk factors early, buying time for early intervention. Unfortunately, such
research remains rare. Additionally, machine learning technology enables large-
scale, multi-indicator, cross-cultural data collection, moving from independent
small-sample data to cross-regional public shared databases, effectively improv-
ing research external validity and providing evidence for deeper exploration of
autism causes and successful prevention. However, it should be noted that cur-
rent public databases mostly originate from individual or institutional research
with inconsistent data collection purposes and standards, lacking homogeneity
in sample information integration. This may create bias between training and
test sets, and model generalization issues require further verification.

3.2 Data Collection

After sample selection, data collection can commence. In recent years, data
collection methods and types have become more diverse due to technological
updates, such as physiological signal data collection based on EEG signals and
imaging technology, and behavioral data collection through scales, observations,
and interviews. Machine learning identification and diagnosis are based on fea-
tures reflecting autistic tendencies and various neurological markers. Currently,
these mainly include demographic data such as age, gender, and ethnicity; typi-
cal symptom manifestations like eye contact, social smiling, and imitation; clin-
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ical data including personal and family medical history; physiological signal
data such as functional magnetic resonance imaging, structural magnetic reso-
nance imaging, electroencephalography, and ultrasound; and multi-modal data
combining different data types (see Table 2).

Table 2. Data Types for Machine Learning-Based Autism Identifica-
tion and Diagnosis

Data Type Specific Indicators
Imaging Functional magnetic resonance imaging (fMRI),

structural magnetic resonance imaging (sMRI),
electroencephalogram (EEG), ultrasound (UT)

Scales/Questionnaires Autism Diagnostic Observation Schedule
(ADOS), Autism Diagnostic Interview-Revised
(ADI-R), Diagnostic and Statistical Manual of
Mental Disorders (DSM-IV/DSM-V),
International Classification of Diseases (ICD-10),
Autism Observational Scale for Infants (AOSI),
Modified Checklist for Autism in Toddlers
(M-CHAT), Mullen Scales of Early Learning
(MSEL), Vineland Adaptive Behavior Scales
(VABS), Social Responsiveness Scale (SRS),
Autism-spectrum Quotient-10 (AQ-10), Child
Behavior Checklist (CBCL), Social
Communication Questionnaire (SCQ), Parent
Questionnaire

Behavior Eye movement behavior, social behavior,
stereotyped behavior, postural control, upper
limb movement, etc.

Clinical Data Parental medical history, child personal
information (age, gender, handedness, IQ,
ethnicity, medical history, diet, sleep)

Genetics DNA, RNA, metabolites, speech

3.2.1 Image-Based Classification Using biological markers such as brain
imaging, ultrasound imaging, and retinal imaging as input features for machine
learning technology can provide objective evidence for autism classification, mak-
ing it the most widely applied approach in research. fMRI’s high temporal reso-
lution facilitates precise localization of cortical activity in specific brain regions.
sMRI offers high spatial resolution, objectively recording differences in brain
tissue composition among individuals. Some scholars propose that combining
both technologies yields the best results in autism classification studies. For
example, Rakić et al. (2020) collected sMRI and resting-state fMRI (rs-fMRI)
images from 817 participants aged 7-64 years in the ABIDE-I database. They
used the Fisher algorithm to reduce dimensionality of feature vectors, which
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then served as input for classifiers, finally employing stacked autoencoders and
multilayer perceptron algorithms for identification, achieving accuracy up to
85.06%. Sen et al. (2018) also found that using both technologies as feature
inputs produced optimal ASD vs. TD identification results. However, other
studies have shown that using fMRI or sMRI images alone can also achieve ac-
curate identification of individuals with autism (Eugenia et al., 2020; Katuwal et
al., 2016). Guo et al. (2017) collected rs-fMRI data from individuals with ASD
and TD, finding that a deep neural network with feature selection achieved clas-
sification accuracy of 86.36%. EEG, being less expensive and more convenient,
can provide evidence of neurophysiological activity for autism identification in
children. Studies have used EEG technology to identify autistic children as
young as 3 months (Dickinson et al., 2020) and aged 3-14 years (Grossi et al.,
2017; Abdolzadegan et al., 2020) with good performance.

3.2.2 Scale/Questionnaire-Based Classification Traditional standard-
ized measurement tools, which incorporate rich theoretical knowledge and solid
practical experience from clinical experts, serve as the “gold standard”for
autism screening and diagnosis, providing strong evidence for machine learning
model construction. There are two forms of identification and diagnosis based
on traditional assessment tools. The first involves using machine learning
technology to analyze data from traditional standardized tests to explore
classification accuracy. In studies from 2018 and 2020, Abbas et al. used
behavioral modules commonly employed in ADOS and ADI-R as classifier
input information, proposing a machine learning-based multi-module autism
assessment method. This method includes three modules: parent questionnaire,
key behaviors marked in home videos, and clinical questionnaires. Using
random forest, L2-regularized logistic regression, and gradient boosted decision
trees to classify children aged 18-72 months, they found that when using mod-
ules one and two simultaneously with an inconclusive results variant ($�$25%),
classification accuracy exceeded 98%, reaching 92% when all three modules
were combined. Even with three modules, total testing time was only about 15
minutes. Other researchers have designed mobile screening applications, ASD
Tests (Thabtah, 2019) and Autism AI (Shahamiri & Thabtah, 2020), based
on AQ-10 (child/adolescent/adult versions) and the Quantitative Checklist for
Autism in Toddlers (Q-CHAT) for autism prediction in children, with ASD
Tests achieving identification accuracy up to 99.85% in just 3-5 minutes.

The second approach involves machine learning algorithms screening out the
most representative questions from traditional standardized scales or question-
naires to build classifiers (Levy et al., 2017). For example, Duda et al. (2016b)
found through logistic regression and other algorithms that when 7 key items
were selected from ADI-R’s 93 items or when ADOS dimensions 2 and 3 were
used alone as classification criteria, classification accuracy for autistic children
reached 99%, reducing testing time to just over ten minutes. Duda and Ma et
al. (2016a) and Duda and Haber et al. (2017) also built classifiers based on 5 typ-
ical behaviors and 15 derived questions from the SRS scale, with classification
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performance meeting expectations (AUC > 93%, AUC = 89%). Notably, nearly
half of the literature on scale-based classification simultaneously employed two
or more tools, hoping to achieve better classification results through integration
of different assessments.

3.2.3 Behavior-Based Classification Typical behavioral manifestations of
autistic children can be directly observed in early development, providing ex-
plicit indicators for classification model construction. Social impairment and
repetitive stereotyped behaviors are core diagnostic criteria for ASD and serve
as important bases for behavioral indicator classification. Qiu et al. (2020)
used the Still-Face Paradigm (SFP) to model classification indicators including
frequencies and durations of non-social/social smiling, resistant behavior, eye
contact, and positive social engagement in HR-ASD and TD children. Negin
et al. (2021) constructed an Expanded Stereotype Behavior Dataset (ESBD)
for HR-ASD children, achieving differentiation from TD through four actions:
spinning, arm flapping, hand movements, and head banging. Eye trackers can
record eye movement trajectory features during visual information processing,
with eye movement behavior being the most commonly used behavioral indica-
tor for autism classification based on machine learning. Specific indicators in-
clude fixation duration and frequency. Wan et al. (2019) used an SMI RED250
portable eye-tracking system to record fixation durations of 4-6-year-old ASD
and TD children on different body parts while watching a 10-second video of
a female speaker, building a classifier using support vector machine algorithms.
They found that differences in children’s fixation durations on the speaker’s
mouth and body could effectively distinguish ASD from TD (Acc = 85.1%, Sen
= 86.5%, Spe = 83.8%). Additionally, since some autism populations exhibit
motor impairments, studies have shown that indicators such as postural con-
trol and upper limb movement can also serve as early classification bases, with
application accuracy reaching over 90% (Li et al., 2020; Wedyan et al., 2019).

3.2.4 Multi-Modal Data Classification “Multi-modal”refers to the diver-
sity of symbolic systems or effective means of representation, while multi-modal
data refers to the integration of multiple classification methods and indicators
to achieve research objectives. In this study, it specifically refers to combin-
ing single-modal data collection methods such as scales, imaging, and behav-
ior, using two or more methods simultaneously for autism classification model
construction. Kang et al. (2020) collected rs-fMRI data and eye movement
indicators in response to own-race and other-race human faces from 3-6-year-
old ASD and TD children, combining support vector machine with minimum
redundancy-maximum relevance (MRMR) feature selection methods for partic-
ipant classification. They found that when EEG and eye movement data served
as simultaneous classifier inputs, classification accuracy reached 85.44% with
AUC exceeding 93%, significantly higher than the 66.9% accuracy achieved us-
ing single behavioral indicators alone. Bosl et al. (2018) longitudinally tracked
high- and low-risk ASD infants’EEG data between 3-36 months, measuring
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participants’autism symptom severity using ADOS at 36 months, and found
that EEG data from 3-month-old infants could predict their ADOS scores at
age 3. Furthermore, Han Baozhen (2018) found that brain network data fused
from multi-modal information achieved the best classification results for ASD
and TD.

The application of machine learning in autism early classification has expanded
from single-modal to multi-modal data, with increasingly diverse classification
indicator types. Collection methods have evolved from explicit behavioral in-
dicators to internal neurological markers, with technology becoming more ob-
jective and comprehensive. Rich data collection methods and types can assist
model construction at the source, providing a foundation for achieving optimal
classification results. However, several issues in current data collection require
improvement. First, imaging techniques are relatively monolithic, mainly fMRI
and sMRI, with limited application of ERP, fNIRS, and other technologies in
this field. Second, traditional diagnostic tools are systematically designed with
fixed purposes for each module, yet different machine learning methods apply
inconsistent item or module reduction criteria, yielding non-unified results. The
basis and standards for tool reduction lack normative discussion. Traditional
tool measurement duration ensures more detailed and accurate testing; whether
shortening time to over ten minutes with machine learning may cause informa-
tion omission and result bias remains a significant concern. Finally, classification
indicators based on typical behaviors are overly broad, while research based on
genetic materials such as DNA and RNA is rare. Different researchers focus on
vastly different areas, making it debatable how to select the most representative
one or several indicators from numerous options. These issues require exten-
sive discussion and demonstration before applying machine learning to autism
classification. Only by truly solving these source problems can technological
advantages be genuinely realized for the autism population.

4.1 Machine Learning Algorithms
Algorithms are the technical elements of model construction. Machine learning
algorithms are broadly classified into supervised learning, unsupervised learning,
semi-supervised learning, and reinforcement learning based on learning meth-
ods, and into traditional machine learning and deep learning based on model
structure depth. Current applications in early autism identification primarily
use traditional algorithms, including Support Vector Machine (SVM), Decision
Tree (DT), K-Nearest Neighbors (KNN), Naive Bayes (NB), Regression, Ran-
dom Forest (RF), and Gradient Boosted Decision Trees (GBDT). However, with
continuous technological development, deep learning methods such as Artificial
Neural Network (ANN), Convolutional Neural Network (CNN), Deep Neural
Networks (DNN), and Multilayer Perceptrons (MLP) have gradually attracted
researchers’attention (Eni et al., 2020; Raj & Masood, 2020).

SVM is one of the representative algorithms of traditional machine learning,
particularly suitable for binary classification problems. Liu et al. (2016) used
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a Radial Basis Function (RBF) kernel to project non-linear data into high-
dimensional space for separation, effectively distinguishing ASD from TD with
88.51% accuracy. However, research shows that traditional algorithms like SVM
often classify samples directly based on features without performing or only per-
forming one feature transformation and selection, overly relying on upstream-
provided features, exhibiting sensitivity to missing data and overfitting prob-
lems in multi-classification scenarios, with limited effectiveness when facing the
complex etiology and manifestations of autism (Namdeo & Singh, 2021; Yang
Jianfeng et al., 2019). Deep learning, without relying on upstream features, can
directly input large amounts of raw data into models, detecting and calculating
abstract features through multiple data transformations to aid classification,
with improved classification performance and generalization ability compared
to traditional methods (Hu Yue et al., 2019; Li et al., 2019; Dubreuil et al.,
2020). Salari et al. (2019) used rs-fMRI data as classification indicators, em-
ploying SVM, KNN, RF, and CNN to build classifiers separately, finding that
CNN (Acc = 70.22%) achieved higher classification accuracy than SVM (Acc
= 69.35%), KNN (Acc = 62.11%), and RF (Acc = 59.94%). Dong et al. (2021)
built a CNN model using resting-state EEG as classification indicators, achiev-
ing classification accuracy of 92.63%. Artificial neural networks, as basic com-
ponents of deep learning, have also demonstrated high classification accuracy.
Grossi et al. (2017) built a novel classification system based on ANN, combin-
ing Multi-Scale Ranked Organizing Map (MS-ROM) with Implicit Function as
Squashing Time (I-FAST) algorithms, using EEG images as discrimination in-
dicators, and found the algorithm achieved 100% accuracy in ASD prediction.
However, research also shows that traditional algorithms can self-optimize by
increasing the number of classifiers. Random Forest combines bootstrap resam-
pling with decision tree algorithms to build a collection of tree-based classifiers
(Cao Zhengfeng, 2014), with significantly higher classification speed, accuracy,
and noise resistance than single classifier algorithms, and can reduce overfitting
problems to some extent. Wingfield et al. (2020) developed an ASD screen-
ing program and found that RF significantly outperformed single NB and DT
classifiers, with AUC reaching 98%.

Machine learning algorithms can automatically detect patterns in data with-
out explicit coding, handling complex non-linear data with powerful functional
advantages over traditional identification and diagnosis methods. Recent ap-
plications in ASD classification research have also shown a trend transitioning
from traditional algorithms to deep learning, substantially improving diagnostic
efficiency. However, over 75% of current studies still use traditional machine
learning algorithms, indicating a need for increased attention to deep learning.
Additionally, numerous algorithms are currently used in research, with signifi-
cant differences among researchers and varying results from the same algorithm
applied to different populations, leading to ongoing controversy over optimal
algorithms. Future research should continue exploring how to identify the best
algorithms to maximize technological value.
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4.2 Machine Learning Effectiveness Evaluation
Effectiveness evaluation serves as the guiding principle and navigation tower
for model construction. After data collection and algorithm selection, model
validity must be verified. Machine learning effectiveness evaluation is generally
calculated by using professional physician diagnosis as the criterion and com-
puting correlation coefficients or successful prediction proportions. Based on
original binary classification data characteristics, classification effects are gen-
erally divided into positive and negative classes, where true positives and true
negatives represent good predictions in positive and negative classes, respec-
tively, while false negatives and false positives represent poor predictions (see
Table 3). Specific model performance evaluation indicators include: (1) Ac-
curacy (Acc), the proportion of correctly classified samples to total samples
—generally, higher accuracy indicates better classification effects, calculated as
Acc = (TP+TN)/(TP+FN+FP+TN); (2) Sensitivity (Sen), the proportion
of correctly classified individuals with autism in the positive class, also called
recall or True Positive Rate (TPR), calculated as Sen = TP/(TP+FN); (3)
Specificity (Spe), the proportion of correctly classified individuals without
autism in the negative class, also called True Negative Rate (TNR), calculated
as Spe = TN/(FP+TN); (4) Receiver Operating Characteristic (ROC)
curve, a graph with false positive rate on the X-axis and true positive rate on
the Y-axis, primarily comparing classification performance by calculating the
Area Under the ROC Curve (AUC/AUROC)—generally, larger AUC/AUROC
indicates better classification effects. In addition to these four commonly used
indicators, some studies also employ Positive Predictive Value (PPV), Negative
Predictive Value (NPV), and False Discovery Rate (FDR) to examine classifier
effectiveness.

Table 3. Confusion Matrix for ASD Binary Classification Data

ASD Non-ASD
ASD True Positive (TP) False Negative (FN)
Non-ASD False Positive (FP) True Negative (TN)

4.3 Machine Learning Process
A logically clear, complete, and orderly data processing process is the explicit
manifestation of effective model implementation. Machine learning application
in early ASD identification and diagnosis generally follows four steps: First
is the data collection stage, selecting imaging, scale, behavior, and other data
indicators required for ASD classification. Second is the raw data processing
stage, primarily aimed at feature selection through oversampling, undersam-
pling, and other methods to reduce noise from duplicate records, missing values,
and unbalanced data, decreasing computational complexity and improving clas-
sification precision to form datasets required for classification. Third is the ASD
vs. control group classification stage, typically employing k-fold cross-validation
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to randomly divide the entire dataset into k portions, with one portion as the
test set and k-1 portions for training. The training data can be further ran-
domly divided into training and validation sets, conducting cross-validation k
times so each portion serves as the test set once, averaging k results to obtain fi-
nal outcomes. The specific process can be summarized as: (1) Input the training
set, use machine learning algorithms for training to build an ASD classification
model; (2) Input the validation set into the model, compare differences between
model predictions and“autism”labeled data to verify model classification accu-
racy; (3) Use the test set to evaluate model classification performance. Finally,
obtain the optimal classification model. Epalle et al. (2021) built a DNN model
following this procedure, using brain imaging data from ABIDE-I to distinguish
ASD from TD. In the data processing stage, they used oversampling for feature
selection, increasing features by 19,900 in the CC200 set, 4,005 in the AAL90
set, and 12,720 in the DOS160 set. In the classification stage, they used 10-fold
cross-validation, 5-fold stratified cross-validation, and leave-one-site-out meth-
ods to build classifiers and evaluate results, setting 70% for training, 20% for
validation, and 10% for testing in each data portion. Final model validation
showed the classifier could achieve 78.07% accuracy in distinguishing the two
groups.

Machine learning application in ASD child classification automatically allocates
training and test sets, selects and extracts data features through filtering and
repeated testing, discovers hidden patterns in data, reduces data bias at the
source, and increases research internal validity. Model validity verification cov-
ers multiple dimensions including Acc, Sen, Spe, AUC, PPV, and NPV, with
increasing emphasis on objective model measurement, which also enhances ex-
ternal validation to some extent. However, literature review also reveals that
classification indicator combinations vary dramatically across studies, with in-
consistent numbers of reported indicators and a lack of consistent, widely rec-
ognized classification effectiveness indicator systems. Additionally, Falkmer et
al. (2013) suggest that autism classification model accuracy should reach at least
80% to be considered acceptable, yet some current studies report accuracy be-
low 60%, far from meeting requirements (Bussu et al., 2018). How to continue
optimizing and standardizing these issues at the technical level requires deeper
discussion in future research.

5.1 Predicting Autism Risk Factors
As a neurodevelopmental disorder with unclear etiology, autism cannot be pre-
vented through routine prenatal examinations alone. Machine learning tech-
nology can effectively predict autism risk by extensively collecting imaging and
biological indicator information, fully mining and summarizing information, and
calculating predictive data models, providing new directions for autism etiology
exploration and comprehensive diagnosis and treatment.

Both perinatal environment and maternal physical and mental health factors
can affect embryonic development quality. Prenatal medical examination and
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monitoring of pregnant women (especially high-risk pregnant women) and fe-
tuses may help identify autism risk factors. Machine learning can infer ASD risk
factors from imaging and biomarker information collected through ultrasound
examinations, amniocentesis, X-ray examinations, villous cell examinations, and
fetoscopy. For example, Caly et al. (2021) predicted newborn autism risk by
collecting fetal ultrasound measurements (including femur length, head circum-
ference, abdominal circumference) and biological characteristics (such as IgG cy-
tomegalovirus levels). Using Least Absolute Shrinkage and Selection Operator
(LASSO), DT, and eXtreme Gradient Boosting (XGBoost) algorithms to build
classification models, they found the model’s positive predictive value could
reach 77%. Ten indicators including maternal family history of immune disease,
maternal immunity to cytomegalovirus, late-pregnancy fetal femur length, late-
pregnancy fetal white blood cell count, newborn heart rate, and gender could
serve as ASD predictive markers. Genes are internal factors determining life
and health. Genetic testing can extract DNA molecular information from cells
to determine newborn gene types and defects. Machine learning technology can
help discover genetic factors related to autism by sorting out complex genetic
information. Bahado-Singh et al. (2019) used the Infinium HumanMethyla-
tion450 BeadChip to detect white blood cell DNA from ASD and TD newborn
blood spots, finding significant abnormal methylation at CpG sites in cytosine
genes, with prediction results achieving AUC of 100%. Researchers also found
epigenetic regulation disorders in autism-related genes including EIF4E, FYN,
SHANK1, VIM, LMX1B, GABRB1, SDHAP3, and PACS2. Other scholars
have reported that long non-coding RNA (lncRNA) can also predict newborn
ASD risk (AUC = 83.9%; Gök, 2018). Qiu et al. (2020) built a prediction
model based on SVM showing that multiple metabolites in folate-dependent
one carbon metabolism (FOCM) and transsulfuration (TS), as well as mater-
nal pre-pregnancy and pregnancy folic acid intake, could serve as indicators
for newborn autism risk prediction, with model prediction accuracy exceeding
96%. Using machine learning to track functional connectivity Magnetic Reso-
nance Imaging (fcMRI) in infants from HR-ASD families advanced ASD risk
prediction age to 6 months post-birth (Emerson et al., 2017).

5.2 Screening for High-Risk Autism
Early autism screening can identify high-risk children in large populations,
which is significant for improving social adaptation in autistic children, prevent-
ing secondary developmental disorders, and reducing family and social burdens
(Chen Guanghua et al., 2022). If screening can be directly operated by par-
ents or others familiar with the child, potential ASD patients can be identified
earlier, avoiding missed intervention opportunities. Thabtah et al. (2018) used
machine learning models to simplify traditional scales (CHAT, AQ), developing
a mobile application suitable for ASD screening—ASD Tests. This tool can be
freely downloaded and used on mobile phones, covering four stages: infancy (1-3
years), childhood (4-11 years), adolescence (12-16 years), and adulthood (17+
years), with only 10 test questions per stage and testing time under 3-5 minutes,
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easily operable by non-professionals. Research found the program’s screening
sensitivity, specificity, and accuracy for HR-ASD across child, adolescent, and
adult stages all exceeded 95%, demonstrating good classification performance
(Thabtah et al., 2019). Raj and Masood (2020) built an autism screening model
based on 21 features including individual gender, ethnicity, and presence of con-
genital jaundice, finding that CNN could achieve screening accuracies of 98.30%,
96.88%, and 99.53% in child, adolescent, and adult populations, respectively, en-
abling rapid identification of autistic patients in large populations. Additionally,
neuroimaging data and behavioral performance, as important internal and ex-
ternal references for risk identification, have been widely applied in screening or
diagnostic model construction, achieving satisfactory results (Rakić et al., 2020;
Dickinson et al., 2020; Lai et al., 2020; Qiu et al., 2020).

5.3 Assisting Autism Diagnosis
Diagnosis involves more comprehensive and detailed professional testing of chil-
dren identified as high-risk through screening. Traditional diagnostic methods
obtain data through observing children’s external behaviors and parent reports,
which are susceptible to evaluator subjectivity and reporter recall bias. Prob-
lems such as long waiting periods and misdiagnosis in the diagnostic process
also hinder subsequent clinical intervention implementation. Machine learning-
assisted professional diagnosis can incorporate large numbers of objective classi-
fication indicators, reducing subjective testing drawbacks to some extent, while
also reducing time consumption and waiting costs. Social robots are commonly
used tools in ASD intelligent diagnosis, designed to be friendly and communicate
with test-takers through rich facial and body language, reducing social anxiety
in autism. Ramírez-Duque et al. (2019) used RGBD sensors to collect behavioral
features of HR-ASD and TD toddlers interacting with the ONO social robot,
and used CNN to build a facial recognition model for the two groups of children
to assist professionals in diagnosing ASD children. They found the model could
achieve automated ASD identification within 40 minutes, with accuracy basi-
cally consistent with clinical expert diagnosis. Imaging and traditional scales
also provide effective evidence for machine learning-assisted diagnosis (Bone et
al., 2016). Tariq et al. (2018) built a model using ADOS and ADI-R as indi-
cators, achieving diagnostic accuracy over 94% and sensitivity exceeding 90%.
Abdolzadegan et al. (2020) analyzed EEG data from 3-12-year-old ASD and TD
children, establishing diagnostic models based on SVM and KNN, with accuracy
reaching 94.68%.

5.4 Managing Assessment and Intervention Processes
The ultimate goal of early autism prediction, identification, and diagnosis is
to provide effective early intervention for children. Collecting information on
assessment and intervention processes for autism populations and tracking in-
tervention implementation effects can provide insights for determining children’
s physiological and pathological mechanisms and treatment targets. However,
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traditional screening, diagnosis, intervention, and re-evaluation are relatively
independent and scattered stages, making systematic collection and integration
of information difficult, which in turn makes it harder to discover and grasp
internal trends and hidden features in data, resulting in data waste. A major
advantage of machine learning-based classification is effective data utilization,
constructing integrated intelligent assessment and intervention management sys-
tems based on existing assessment and intervention data to enhance longitudinal
monitoring of diagnosis and intervention for autistic children. Cognoa (Cognoa
ASD Screener/Cognoa ASD Diagnosis Aid) is a new ASD assessment program
supported by machine learning technology, combining screening, diagnosis, and
risk prediction functions. The program primarily serves infants and preschool
autistic children (18 months to 5 years), requiring parents to complete a 15-
item questionnaire and upload two or more 1-2 minute videos of children’s
daily life (such as mealtime, playtime). The system automatically scores and
outputs risk values after data upload, with the entire process taking about 15
minutes (Kanne et al., 2018). The program automatically saves results after
each assessment. In June 2021, the U.S. Food and Drug Administration (FDA)
evaluated the feasibility of applying this program to autism diagnosis, finding
that program diagnosis results for 425 children from 14 medical centers were
basically completely consistent with expert conclusions, leading to approval for
market use. Machine learning technology-based intelligent management sys-
tems for autism pictorial assessment can also record data on children’s ability
changes from early screening to intervention treatment, obtaining children’s
re-evaluation information (Perera et al., 2017). Expert systems supported by
artificial neural networks can even intelligently respond to and solve uncertainty
problems without pre-programmed settings, providing real-time suggestions for
autism diagnosis and intervention, serving as “capable assistants”in clinical
assessment (Jin Yuchang et al., 2022; Rahman et al., 2020; Negin et al., 2021).

In summary, machine learning applications in autism classification cover eti-
ological analysis, risk prediction, screening of at-risk populations, assisted di-
agnosis, and intelligent disease course management. These efforts help in-
crease practitioners’understanding of autism etiology and disease course in-
formation, achieve dynamic management of screening, diagnosis, intervention,
and re-evaluation, save human and material resources required for long-term
follow-up, more quickly identify “commonalities”among numerous individual
factors, and improve treatment effectiveness—providing a reference for future
clinical diagnosis and treatment.

6.1 Advantages
Currently, machine learning technology has been applied to early prediction,
screening, and diagnosis of autistic children, with its objectivity, convenience,
and effectiveness undergoing extensive validation. Classification performance
continues to optimize and improve, with some intelligent tools beginning to
be promoted and applied. Compared to empirical diagnosis and traditional
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measurement, the integration of machine learning demonstrates several advan-
tages of artificial intelligence technology, concentrated in four aspects. First,
machine learning has stronger capabilities for acquiring and organizing data
indicators, helping to build multi-modal classification models. Traditional clas-
sification methods primarily draw conclusions through observation of explicit
behavioral indicators with limited reference variables, while machine learning
can combine various types of data indicators obtained through different ob-
servation methods, considering both internal and external influencing factors,
reducing subjective errors, and improving comprehensiveness and objectivity
of prediction and identification results. Additionally, machine learning mod-
els can longitudinally manage assessment and diagnosis processes, increasing
data utilization rates. Second, machine learning reduces time costs for pre-
diction and identification, improves evaluation efficiency, and reduces pressure
on diagnostic personnel. Classification model establishment can quickly identify
high-risk autistic patients through large-scale screening, alerting parents and rel-
evant personnel earlier, while also compressing diagnosis time by reducing test
items and shortening evaluation processes, decreasing waiting time and profes-
sional physician pressure. Third, machine learning increases research internal
and external validity. The modeling process and computational principles of
machine learning differ from traditional methods, automatically dividing raw
data into training and validation sets without requiring data generation models
and parameter estimation, directly inputting performance indicators. Models
can also continuously optimize with sample size accumulation, enhancing re-
search internal validity and external generalizability, and accelerating the speed
of model application to practice. Fourth, machine learning can automatically
extract key features to help establish risk early warning mechanisms. Machine
learning can capture subtle expression or gesture changes unobservable to the
naked eye, reducing omission of key indicators, and is suitable for non-linear
data, capable of extracting crucial information from complex data, making it
more appropriate for analyzing diseases like ASD with unclear etiology and com-
plex structure, reducing the possibility of symptom deterioration. Especially for
infants and preschool children, early detection and intervention can maximize
benefits, helping these children and their families achieve higher quality of life
and reducing various social adaptation problems caused by disabilities.

6.2 Limitations and Future Directions
Although machine learning has certain methodological advantages in ASD child
identification and diagnosis, and related research achievements are gradually
increasing, there remains some distance from large-scale application. Specific
problems faced and possible solutions can be summarized in three aspects.

First, there is a lack of research tracking autism pathogenic sources in pregnant
women and newborns. Genetic research results indicate that common genetic
variations such as gene mutations, translocations, inversions, and copy number
variations may be correlated with ASD to some degree, with copy number vari-
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ation frequency significantly higher in newborns with ASD than in TD children
(Sanders et al., 2011). Other research reports suggest ASD may result from a
sequence of pathogenic events affecting cell proliferation, migration, and many
other fundamental processes (Caly et al., 2021). Autopsy reports of autistic chil-
dren’s brains also show abnormal excess neurons in the prefrontal cortex, along
with brain overgrowth and macrocephaly issues (Tyzio et al., 2014). Rahman
et al. (2020) also found that parental age and family medical history increase
autism risk in newborns. This evidence indicates autism is influenced by genetic
factors, and these conditions may already appear during embryonic formation
and development (Caly et al., 2021). In addition to genetic factors, maternal ex-
posure to hazardous environments is also a susceptibility factor for autism. Choi
et al. (2016) found that increased ASD incidence is associated with maternal
viral or microbial infection, fever, and immune system diseases. Medication use
during pregnancy, particularly sodium valproate, and vitamin deficiency may
cause autism in fetuses. Cesarean section, premature birth, and neonatal com-
plications also increase ASD incidence (Cloarec et al., 2019). This suggests that
internal and external environments in early life are causes of autism. Clarifying
pathological, etiological, and disease course factors in early individual develop-
ment may provide new opportunities for risk prediction and prevention, but
unfortunately, current literature rarely includes autism identification research
using perinatal data. Among the only two studies in current literature, Caly
et al. (2021) collected routine biomarkers and ultrasound measurements from
pregnant women from early pregnancy to one day after birth to predict autism,
comparing predictions with diagnosis results when children were 4-5 years old,
achieving 77% prediction accuracy. Bahado-Singh et al. (2019) collected 249
types of neonatal (24-79 hours after birth) white blood cell epigenome markers,
successfully predicting children later diagnosed with autism (Sen = 97.5%, Spe
= 100%). This suggests that if we can extensively collect health information
on pregnant women and their family members during embryonic formation and
early neonatal development, focusing on possible teratogenic factors in genetics
and environment, especially relatively stable biological markers, and use the
massive data sorting function of machine learning models to extract common
factors, we may gradually move from a“passive waiting”to an“active defense”
position. Therefore, future research could, following ethical principles, attempt
to establish children’s physiological and pathological information databases
through pregnancy screening and neonatal physical examination links, collect-
ing process information on children (especially those from high-risk families)
from embryonic period to birth, and could also 借鉴 the American Academy of
Pediatrics’approach to conduct long-term follow-up studies at fixed time points
(such as at birth, 8 months, 18 months, etc.) with participant informed con-
sent (Wan et al., 2019), obtaining original data on autism pathogenic sources
in early individual development to summarize possible risk factors and prevent
this disorder early.

Second, there is a lack of standardized model classification data systems. While
machine learning models provide possibilities for processing massive informa-
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tion, technology’s inclusiveness of data may become a double-edged sword.
Although current machine learning classification indicators are diverse in form,
their content is complex and lacks clear classification basis and systematic, rule-
based application effect analysis, with low verifiability of evaluation results. Tak-
ing single-modal classification indicators based on behavior as an example, re-
searchers have used specific indicators including dozens of behavioral manifesta-
tions such as repetitive stereotyped behaviors, resistant behavior, self-injurious
behavior, fine/gross motor skills, social interaction behavior, social smiling, joint
attention, imitation, eye movement changes, expressive and receptive language.
Different behavioral manifestations can be further subdivided into more micro-
level classification indicators—eye movement changes alone can differentiate into
eye scanning, eye tracking, and eye touching/contacting paradigms. However,
even with the same behavioral manifestation, conclusions are not completely
consistent (Wan et al., 2019; Shic et al., 2014). Scale-based classification also
faces this issue, with research literature containing multiple classification tools
with inconsistent information and test objects. Even with the same assessment
tool, item screening standards and conclusions are not completely unified (Emer-
son et al., 2017). Multi-modal classification models mix more information with
low relevance to evaluation during multi-source information fusion, causing some
interference with testing accuracy. The combination of multiple modalities and
different classification indicators within the same modality provides researchers
with more classification standard choices while also introducing more measure-
ment errors, 不利于 research result promotion and generalization.

Therefore, model construction should emphasize internal orderliness of classifica-
tion indicators, sorting out standards and basis for indicator selection, gradually
identifying a subset of indicators with strong stability, wide applicability, and
high accuracy to construct more scientific and stable classification indicator sys-
tems. Some researchers propose that age could serve as a basis for classification
indicator division. Liu et al. (2016) showed that ASD identification in infants
and children is more suitable for non-verbal behavioral features such as eye con-
tact, gestures, and facial expressions, while adolescent ASD should focus more
on language communication and emotional interaction with peers. With age
increase, social communication and emotional connection become more impor-
tant classification indicators. Additionally, brain changes often appear before
clinical manifestations and have high stability (Wolff et al., 2012; Wolff et al.,
2015; Elsabbagh et al., 2012), so objective imaging indicators should be partic-
ularly emphasized in classification processes (Hazlett et al., 2017; Emerson et
al., 2016). Verbal IQ, autism severity, and other verified and easily collected
classification standards can also be directly incorporated into classification sys-
tems (Katuwal et al., 2016). However, these criteria remain relatively broad
and cannot fully meet the 精细化 requirements of autism specificity for indicator
selection. Future research could, based on existing results, continue to refine the
applicable scope of behavior, scale, imaging, and other indicators, rank specific
indicators according to classification performance (accuracy, stability, etc.), and
explore how different modalities can be organically combined and complement
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each other’s strengths, considering both internal neural mechanisms and exter-
nal behavioral manifestations of autistic children to better unlock the hidden
value of multi-modal data.

Finally, the transformation from theoretical models to practical application is
not yet fully mature. Machine learning can help parents or other practitioners
understand disease risk early and formulate rehabilitation plans promptly. How-
ever, current research remains at the theoretical stage of model construction, and
several issues require careful consideration before model application to practice.
First is the representativeness of research samples to the population. Partici-
pants in existing research models are typically selected, mostly from high-risk
autism families, with autism proportions far exceeding normal values in typical
development populations (20%-33% vs. 1%). Whether evaluation results can be
directly applied to general populations requires compatibility testing (Thabtah,
2019; Rahman et al., 2020). Second is model applicability and generalizability.
Limited by research feasibility factors, over one-third of current studies have
sample sizes under 300, potentially creating sampling bias, and few studies re-
port validation of results across different cultural backgrounds and geographical
regions, leaving theoretical model generalizability uncertain (Mazumdar et al.,
2021; Liaqat et al., 2021). Third is algorithm accuracy and stability needing
improvement. Current models still mostly use traditional machine learning algo-
rithms, with some classification accuracy below 60% and stability insufficient for
large-scale testing requirements. Fourth is relatively single model function. Cur-
rent research achievements can only make simple binary judgments on whether
individuals have autism, with 极少 direct application to diagnosis (Millar et al.,
2019). The application of computational models to prediction and evaluation
process management is also superficial and insufficiently in-depth. Fifth is the
need to improve application audience recognition of models. While user-friendly
intelligent identification software like ASD Tests and Cognoa can be easily down-
loaded on mobile phones, with quick screening results obtained by uploading
videos or completing test questions, the vast majority of parents, teachers, and
even relevant professionals are unaware of these tools. Even if parents and
relevant personnel know about these testing tools, their recognition and accep-
tance of tools related to identification and especially “diagnosis”results may
fall short of researcher expectations. Compared to traditional methods where
professional physicians conduct long-term observations and parent interviews,
combining highly structured scales for careful consideration (with ADI-R alone
taking 2.5 hours and containing numerous natural real-environment interper-
sonal interaction clues) (Abbas et al., 2020), whether machine learning models
can obtain genuine and effective data while shortening testing time, whether
pre-set training data can fully cover test objects, how to interpret evaluation re-
sults, and how to apply results to subsequent intervention and rehabilitation are
all concerns for parents and other application audiences. As machine learning
technology continues to mature, deeper thinking and demonstration of these is-
sues will help accelerate the transformation from theoretical models to practice.
Future research could, based on enriching research subjects and optimizing ma-
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chine learning algorithms, fully investigate actual needs and concerns of different
audiences, solve problems targeted, increase promotion of theoretical research
results, and continuously deepen theoretical model penetration and promotion
in practice.
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Appendix 1. Summary of Machine Learning Algorithms
and Classification Model Performance
[Note: The table contains detailed information about studies including sample
sizes, ages, countries, data indicators, algorithms/methods, and performance
metrics. Due to its extensive length and specialized content, it is preserved in
its original format as a reference table for researchers.]

Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv —Machine translation. Verify with original.
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