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Abstract
Typically, cognitive diagnosis necessitates diagnostic evaluation of examinees
through cognitive diagnosis models. The validity of diagnostic results generated
by cognitive diagnosis models depends on the congruence between examinees’
response patterns and the selected model. Consequently, when evaluating di-
agnostic outcomes, subject-fit analysis is required to examine the fit between
individual examinees’responses and the model, thereby preventing erroneous or
ineffective remedial interventions. This study proposes a novel subject-fit index,
R, for cognitive diagnosis assessment based on weighted score residuals. Simu-
lation research indicates that the R index demonstrates satisfactory stability in
Type I error rates and high statistical power for detecting four types of aberrant
response patterns: random responding, fatigue, sleeping, and creative respond-
ing. Furthermore, the R index is applied to empirical fraction subtraction data
to demonstrate its practical implementation in operational testing.
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Abstract
Cognitive Diagnostic Assessment (CDA) has been widely used in psychological
and educational measurement to analyze whether test-takers have mastered spe-
cific knowledge points or skills, thereby providing guidance for further learning
and instruction (Leighton & Gierl, 2007; Rupp et al., 2010; Tatsuoka, 1983).
The validity of diagnostic results generated by cognitive diagnostic models de-
pends on whether examinees’response patterns fit the selected model. Therefore,
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when evaluating diagnostic outcomes, person-fit analysis must be conducted to
examine the alignment between individual response patterns and the model,
thereby avoiding erroneous or ineffective remedial measures. This study pro-
poses a new person-fit index, denoted as 𝑅, based on weighted score residuals.
Simulation results demonstrate that the 𝑅 index maintains stable Type I error
rates and exhibits high statistical power for detecting four types of aberrant
examinees: random responders, fatigued examinees, sleepers, and creative re-
sponders. The 𝑅 index is further applied to empirical fraction-subtraction data
to illustrate its practical utility in real testing situations.

Keywords: cognitive diagnosis, person-fit, DINA model, aberrant response

1. Introduction
In recent years, Cognitive Diagnostic Assessment (CDA) has gained widespread
application in psychological and educational measurement, enabling analysis of
whether examinees have mastered specific knowledge points or skills to guide
further learning and instruction (Leighton & Gierl, 2007; Rupp et al., 2010;
Tatsuoka, 1983). Cognitive diagnostic models serve as statistical tools in this
process, facilitating inferences about examinees’attribute mastery patterns (von
Davier & Lee, 2019). The fit between cognitive diagnostic models and test
data directly affects the accuracy of diagnostic results and influences the overall
reliability and validity of the assessment. Consequently, evaluating model-data
fit is essential in cognitive diagnostic evaluation. Standard 5.19 of the Standards
for Educational and Psychological Testing (p. 107) explicitly requires fit testing
between selected item response models and response data in educational and
psychological measurement.

In educational measurement, test scores are used to assess examinees’ability
levels. However, due to potential aberrant behaviors, these scores may not
accurately reflect true skill or knowledge levels. In psychometrics, methods
that quantify discrepancies between observed responses and model-predicted
responses are termed person-fit statistics (Meijer & Sijtsma, 2001). Person-fit
analysis examines the degree to which individual response patterns align with
cognitive diagnostic models. An appropriate cognitive diagnostic model should
accurately reflect the psychological processing characteristics of examinees dur-
ing item responding to enable valid inferences about attribute mastery. When
examinee response patterns fit the selected cognitive diagnostic model, this is
called person-fit; conversely, when aberrant response patterns fail to fit the
model, this is termed person-misfit. Person-misfit can lead to uninterpretable
or invalid inferences about attribute mastery patterns for misfitting examinees,
potentially resulting in inappropriate remedial measures. Additionally, misfit-
ting data may compromise the overall reliability and validity of the test, making
person-fit analysis particularly crucial.

Previous person-fit research has predominantly focused on Item Response The-
ory (IRT; Baker & Kim, 2004), with relatively limited attention to person-fit
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within the cognitive diagnostic framework. Existing studies in this area include:
Liu et al. (2009), who proposed a likelihood ratio test statistic for identifying
aberrant responders based on marginal and joint likelihood ratio tests, introduc-
ing an aberrant response probability variable 𝜌𝑖 and using indicator variable 𝐴 to
define aberrant response types, though this approach has limitations as aberrant
examinees and response types are difficult to define in practice; Cui and Leighton
(2009), who developed the Hierarchical Consistency Index (HCI) to measure the
match between observed and ideal response patterns under attribute hierarchy
models, which is limited when attributes have only partial hierarchical relation-
ships or no hierarchical relationships; Liu et al. (2009) demonstrated that their
likelihood ratio statistic effectively detects spuriously high and low scores when
using the DINA model; Cui and Li (2015) extended the 𝑙𝑧 index to the cognitive
diagnostic framework and proposed the Response Conformity Index (RCI); and
review studies on person-fit in cognitive diagnostic testing (Chen et al., 2016;
Tu et al., 2014).

Given the importance of person-fit research in diagnostic testing, this study aims
to develop a person-fit index for cognitive diagnostic assessments and compare
its performance with the 𝑙𝑧 and RCI indices under various conditions. Detailed
introductions to the 𝑙𝑧 and RCI indices are provided in Appendix A.

2. Development of the Person-Fit Index 𝑅 in Cognitive
Diagnostic Assessment
Residuals represent a fundamental concept in regression analysis, defined as
deviations between observed values and expected (fitted) values in mathemati-
cal statistics. The underlying logic of residual application involves identifying
anomalies by contrasting ideal versus actual situations. Expected deviations
inflate residual statistics, aligning with the conceptual framework of person-fit
testing. This study proposes constructing a residual-based person-fit statistic,
the 𝑅 index, for diagnostic testing. We first define standardized residuals below.

2.1 Definition of Standardized Residuals

Numerous studies on Rasch models and other IRT applications have utilized
standardized residuals of the form 𝑥𝑖𝑗−𝐸(𝑋𝑖𝑗|𝜃𝑖)

√𝑉 𝑎𝑟(𝑋𝑖𝑗|𝜃𝑖)
, where 𝑉 𝑎𝑟(𝑋𝑖𝑗|𝜃𝑖) represents

the variance of random variable 𝑋𝑖𝑗 given ability value 𝜃𝑖 (Masters & Wright,
1997). Summing standardized residuals across items for each examinee yields a
person-fit evaluation metric. On one hand, standardized residuals can be viewed
as weighted residuals where weights are the inverse of conditional standard er-
rors of item responses, approximately following a standard normal distribution.
On the other hand, since person-fit focuses on consistency between observed and
model-predicted responses, severe inconsistencies result in low probabilities for
the observed response pattern. Because this probability appears in the denomi-
nator as an inverse weight, it artificially inflates residual values. Based on these
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considerations, this study uses the inverse of observed response probabilities as
weights for the person-fit statistic.

2.2 Definition of the 𝑅 Index

The mathematical expression for the 𝑅 index is:

𝑅𝑖 = ∑ log [𝑥𝑖𝑗 − 𝐸(𝑋𝑖𝑗|𝛼𝑖)
𝑃 (𝑥𝑖𝑗|𝛼𝑖)

]

where 𝑥𝑖𝑗 denotes the observed score of examinee 𝑖 on item 𝑗, and 𝛼𝑖 represents
examinee 𝑖’s attribute mastery pattern. In practice, true attribute mastery
patterns are unobservable, so this study employs estimated attribute mastery
patterns. 𝐸(𝑋𝑖𝑗|𝛼𝑖) indicates the expected score of examinee 𝑖 with attribute
mastery pattern 𝛼𝑖 on item 𝑗. In the DINA model (de la Torre, 2009), each
item has two parameters: slipping parameter 𝑠 and guessing parameter 𝑔. If
examinee 𝑖 has mastered all attributes required by item 𝑗, then 𝐸(𝑋𝑖𝑗|𝛼𝑖) =
1 − 𝑠𝑗; if examinee 𝑖 has not mastered at least one required attribute, then
𝐸(𝑋𝑖𝑗|𝛼𝑖) = 𝑔𝑗. The numerator represents the difference between observed and
expected responses.

The denominator 𝑃(𝑥𝑖𝑗|𝛼𝑖) denotes the probability of examinee 𝑖 with attribute
mastery pattern 𝛼𝑖 obtaining score 𝑥𝑖𝑗 on item 𝑗. When an examinee with pat-
tern 𝛼𝑖 has mastered all required attributes and responds correctly, 𝑃(𝑥𝑖𝑗 =
1|𝛼𝑖) = 𝐸(𝑋𝑖𝑗|𝛼𝑖). Smaller 𝑃(𝑥𝑖𝑗|𝛼𝑖) values indicate greater person-misfit, fur-
ther amplifying residuals between observed and expected responses. 𝑅𝑖 repre-
sents the sum of 𝑅 values across all items for examinee 𝑖, with larger values
indicating poorer fit. For a “well-fitting”examinee, 𝑅𝑖 is expected to be rela-
tively small. Importantly, the 𝑅 index is not dependent on a specific diagnostic
model; the DINA model is used as an example due to its simplicity, ease of use,
and availability in numerous open-source software packages. For detailed infor-
mation on the DINA model, see de la Torre (2009), Junker & Sijtsma (2001),
and von Davier & Lee (2019).

In the DINA model, each examinee’s completed items can be categorized into
four types based on attribute mastery and response accuracy: mastered at-
tributes with correct response (𝜂11) or incorrect response (𝜂10); incomplete mas-
tery with incorrect response (𝜂00) or correct response (𝜂01). Here, 𝜂 represents
the count of corresponding item types, with the first subscript indicating com-
plete attribute mastery and the second indicating correct response (value of 1
indicates mastery or correct response). Thus, Formula 1 can be rewritten as:

𝑅𝑖 = ∑ log [log [log [log []]]] , (2)

where 𝐽11, 𝐽10, 𝐽00, and 𝐽01 correspond to the numbers of items for 𝜂11, 𝜂10,
𝜂00, and 𝜂01, respectively. Furthermore, when both 𝑠𝑗 and 𝑔𝑗 are less than 0.5,

chinarxiv.org/items/chinaxiv-202204.00026 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00026


Formula 2 transforms to:

𝑅𝑖 = 2 {∑ log [] + ∑ log [] + ∑ log [log []]} , (3)

For a“well-fitting”examinee, 𝐽10 and 𝐽01 should be small, making log [] and log []
negative values and resulting in a smaller 𝑅𝑖. For a “poorly-fitting”examinee,
𝐽10 and 𝐽01 are relatively larger, making log [] and log [] positive values and
yielding a larger 𝑅𝑖.

3. Study 1: Comparative Analysis of 𝑅, 𝑙𝑧, and RCI Indices
To evaluate the performance of the 𝑅 index in person-fit testing for diagnostic
assessments, we conducted a simulation study comparing the 𝑅 index with
the 𝑙𝑧 and RCI indices. Cui and Li (2015) demonstrated that the RCI index
outperformed Liu et al.’s (2009) likelihood ratio statistic, so the latter was not
included as a comparison.

3.1 Research Design

This study examined Type I error rates and statistical power of the 𝑅𝑖, 𝑙𝑧, and
RCI indices under varying conditions of test length, item quality, and aberrant
examinee types in the DINA model. Item length and quality are critical fac-
tors affecting diagnostic measurement accuracy (Cui et al., 2012). Type I error
rate (false positive rate) refers to the proportion of normal examinees incor-
rectly flagged as misfitting, while statistical power represents the proportion of
correctly identified aberrant examinees.

Experimental Design: A 2$×2×$6 fully randomized factorial design was
employed with three factors: test length (20 vs. 40 items), item quality (high
vs. low discrimination), and aberrant examinee type (creative responding, ran-
dom responding, fatigue, sleeping, cheating, and random cheating; Cui & Li,
2015; Santos et al., 2020). High-discrimination items had slipping parameters
𝑠 and guessing parameters 𝑔 drawn from a uniform distribution 𝑈(0.05, 0.25),
while low-discrimination items used 𝑈(0.25, 0.40). Following Cui and Li (2015),
creative responding was defined as high-ability examinees (those who mastered
all attributes) incorrectly answering easy items (those measuring only one at-
tribute). The simulation assumed each examinee had an 80% probability of
mastering each attribute, with attribute mastery patterns generated randomly,
and examinees were set to answer single-attribute items incorrectly. Random re-
sponding represented low-motivation examinees guessing randomly, operational-
ized as a 25% probability of correct response per item (Yu & Cheng, 2019).
Sleeping behavior was simulated as incorrect responses on the first 25% of items,
while fatigue was incorrect responses on the last 25% of items. Cheating was
defined as low-ability examinees (those mastering fewer than 2 attributes with
20% mastery probability per attribute) correctly answering difficult items (those
requiring 3+ attributes). Random cheating represented low-ability examinees
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correctly answering 10% of difficult items with 90% probability (Santos et al.,
2020).

Control variables included: 1,000 examinees, the DINA model as the cognitive
diagnosis model, six attributes, and a fixed Q-matrix (see Appendix B for de-
tails). Examinee knowledge states and item parameters were generated and
estimated using R with the DINA model. The simulation was replicated 30
times, evaluating Type I error rates and statistical power at significance level
𝛼 = 0.05. Type I error was calculated as the proportion of misfit flags among
1,000 normal response patterns generated from the DINA model under each
condition. Statistical power was calculated as the proportion of detected aber-
rant examinees among 1,000 simulated aberrant examinees for each type. Final
results were averaged across the 30 replications.

For the 𝑙𝑧 and RCI indices, critical values were determined from theoretical
distributions at the 0.05 significance level: the 5th percentile for 𝑙𝑧 and the 95th
percentile for RCI. For the 𝑅 index, empirical critical values were used: given
the Q-matrix and DINA model, 10,000 normal examinee response patterns were
simulated assuming uniformly distributed knowledge states. Item parameters
were estimated using MMLE/EM (de la Torre, 2009), 𝑅𝑖 values were computed
for each examinee, sorted ascending, and the 95th percentile was used as the
critical value.

3.2 Results

Table 1 presents Type I error rates and statistical power for the three indices
across experimental conditions, while Table 2 shows pattern correct classification
rates (PCCR) and attribute correct classification rates (ACCR). Type I error
results indicate that the 𝑅 index maintains good control, stable at 0.05, whereas
the 𝑙𝑧 and RCI indices show slight inflation, with RCI approaching reasonable
levels at 40 items. This differs somewhat from Cui et al. (2015), who found
normal Type I error rates for 𝑙𝑧 and RCI, likely due to our use of the DINA
model versus their C-RUM model.

Regarding statistical power, all indices showed improved detection as item dis-
crimination increased, with 𝑙𝑧 demonstrating particularly notable gains for fa-
tigue, sleeping, creative responding, and random responding—consistent with
Cui and Li (2015). Increasing test length from 20 to 40 items generally im-
proved power, though 𝑙𝑧 showed slight decreases for fatigue and sleeping, and
𝑅 showed slight decreases for random cheating.

Across aberrant types, the 𝑅 index performed best for random responding and
random cheating. The 𝑙𝑧 index was superior for fatigue, sleeping, and cre-
ative responding, though 𝑅 approached 𝑙𝑧 performance as test length increased,
likely due to improved pattern and attribute classification accuracy. For low-
discrimination items, 𝑅 outperformed both 𝑙𝑧 and RCI for fatigue and sleeping.
For cheating behavior, RCI performed best and most stably, while 𝑙𝑧 performed
poorly.
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Overall, detection rates improved with increased test length and item quality,
with creative responding being most easily detected. RCI is best suited for
detecting cheating, 𝑙𝑧 for fatigue and sleeping, while 𝑅 shows good power for
creative responding, random responding, and cheating, and remains most robust
under low item discrimination.

4. Study 2: Application of the 𝑅 Index to Empirical Data
Educational assessment tools should reflect students’learning status and provide
feedback for instructional improvement. Cognitive diagnostic assessment classi-
fies examinees’mastery levels on tested attributes, identifying which attributes
require remediation. Person-fit testing ensures the accuracy and validity of these
classifications. To further examine the practical feasibility of the 𝑅 index, this
section applies it to person-fit testing and analysis using fraction subtraction
data.

4.1 Empirical Data Source

This study uses the widely-cited Tatsuoka fraction subtraction dataset, compris-
ing 536 examinees and 11 items (Henson et al., 2009). The test assesses three
attributes: A1) borrowing from whole number, A2) separating whole number
from fraction, and A3) finding common denominator. The test Q-matrix is
shown in Table 3.

4.2 Methods and Results

Using the fraction subtraction Q-matrix and response data, item parameters
and examinee attribute mastery patterns were estimated via the DINA model
using the GDINA package in R (item parameters shown in Table 4). Based
on these estimates, 10,000 normal examinee response patterns were simulated,
and the 95th percentile of 𝑅𝑖 values was used as the critical value for flagging
aberrant examinees. The 𝑅 index was then applied to the empirical data, with
results compared to those from RCI and 𝑙𝑧 indices (see Appendix C for details).

Results identified 23 examinees (4.29%) with aberrant response patterns. Table
5 summarizes selected cases. Examinees 24, 48, and 97 correctly answered items
5, 6, 9, and 10, which measure attribute 1 four times and attribute 2 twice, but
not attribute 3. Their estimated attribute mastery pattern was [110], with an
ideal response pattern of [10011100111], yet they incorrectly answered items
1, 4, and 11, which test attributes A1 and A2, suggesting possible incomplete
mastery of attribute 2.

Examinee 137 showed response pattern [00001011111] with estimated mastery
pattern [111]. Theoretically, mastering all attributes should yield perfect perfor-
mance, but the first four incorrect responses suggest possible“sleeping”behavior.

Examinee 230 had estimated mastery pattern [000] but observed response pat-
tern [01100100110], correctly answering items 2, 3, 6, 9, and 10, suggesting
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potential cheating.

5. Discussion and Future Directions
This study proposes the 𝑅 index for person-fit analysis in cognitive diagnostic
assessment and compares it with 𝑙𝑧 and RCI indices. Simulation results show
the 𝑅 index maintains reasonable Type I error rates around 0.05, making it
suitable for detecting aberrant response patterns. As expected, detection rates
improve with increased test length and item discrimination. However, 𝑙𝑧 showed
slightly inflated Type I error and decreased power for fatigue and sleeping as
test length increased, diverging from Cui et al. (2015), possibly due to model
differences requiring further investigation.

Second, since the theoretical distribution of the 𝑅 index remains unknown, this
study employed empirical critical values, which may limit practical applicability.
Exploring the statistical properties of the 𝑅 index and deriving its theoretical
null or approximate distribution (Andrews, 1993) would facilitate broader ap-
plication.

Third, the current 𝑅 index sums across items for each examinee. An alterna-
tive formulation summing across examinees for each item could enable item-fit
testing (Drasgow et al., 1985), representing a worthwhile extension.

Fourth, item quality substantially impacts person-fit testing, yet this study did
not fully incorporate item quality considerations—a limitation for future research.
Additionally, Wang et al. (2018) attempted to identify specific types of aber-
rant behavior, requiring deeper exploration. In empirical studies, using existing
datasets precluded further analysis and remediation of flagged examinees. More-
over, person-fit indices alone cannot determine the actual causes of aberrant
responses, necessitating auxiliary information such as verbal reports, seating
arrangements, and testing time for comprehensive analysis.

Finally, dichotomous models only assess whether knowledge or skills are mas-
tered, not the degree of mastery. Real-world educational and psychological
assessments include varied item formats (e.g., constructed-response, essays, Lik-
ert scales) that produce polytomous data (Ding et al., 2014; Xia et al., 2018;
Wang et al., 2019) or data with multiple attribute levels (Ding et al., 2015; Zhan
et al., 2017). Future research should extend person-fit testing to polytomous
scoring and multiple-attribute cognitive diagnosis.

6. Conclusion
This study proposes the person-fit index 𝑅 for cognitive diagnostic frameworks.
Through simulation studies comparing Type I error rates and statistical power
of RCI, 𝑙𝑧, and 𝑅 indices, and applying 𝑅 to empirical data, we find: (1) The
𝑅 index maintains reasonable Type I error rates, while 𝑙𝑧 and RCI show slight
inflation; (2) Statistical power improves with increased item discrimination and
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test length; (3) RCI is optimal for detecting cheating, 𝑙𝑧 for fatigue and sleep-
ing, while 𝑅 shows strong detection capability for creative responding, random
responding, and cheating behaviors.

Appendix A: The 𝑙𝑧 and RCI Indices
(1) 𝑙𝑧 Index
Cui and Li (2015) adapted the 𝑙𝑧 index (Drasgow et al., 1985) for cognitive
diagnostic testing. Originally an IRT-based person-fit statistic derived from the
likelihood function 𝑙0 (Levine & Rubin, 1979), 𝑙𝑧 standardizes 𝑙0:

𝑙0𝑖 = ln {∏ 𝑃𝑗(𝜃𝑖)𝑋𝑖𝑗 [1 − 𝑃𝑗(𝜃𝑖)]1−𝑋𝑖𝑗} (A-1)

where 𝑋𝑖𝑗 is the dichotomous (0,1) observed response of examinee 𝑖 to item 𝑗,
and 𝑃𝑗(𝜃𝑖) is the probability of correct response for examinee 𝑖 with ability 𝜃𝑖 on
item 𝑗. Small 𝑙0𝑖 values indicate low probability of observing response pattern
𝑋𝑖 for ability 𝜃𝑖 under the specified IRT model. Standardizing 𝑙0𝑖 yields:

𝑙𝑧 = 𝑙0 − 𝐸(𝑙0)
[𝑉 𝑎𝑟(𝑙0)]1/2 (A-2)

where
𝐸(𝑙0) = ∑{𝑃𝑗(𝜃) ln[𝑃𝑗(𝜃)] + [1 − 𝑃𝑗(𝜃)] ln[1 − 𝑃𝑗(𝜃)]} (A-3)

𝑉 𝑎𝑟(𝑙0) = ∑ 𝑃𝑗(𝜃)[1 − 𝑃𝑗(𝜃)] {ln 𝑃𝑗(𝜃)
1−𝑃𝑗(𝜃) }

2
(A-4)

Cui and Li (2015) replaced 𝑃𝑗(𝜃𝑖) with 𝑃𝑗(𝛼𝑖) from cognitive diagnostic models.
Their simulations revealed that 𝑙𝑧 based on estimated attribute mastery patterns
showed negative skewness, consistent with IRT findings (Molenaar & Hoijtink,
1990; Reise, 1995).

(2) Response Conformity Index (RCI)
Since HCI depends on attribute hierarchies and becomes inapplicable when no
such relationships exist, Cui and Li (2015) proposed RCI to assess consistency
between Q-matrix-predicted and observed responses:

𝑅𝐶𝐼𝑖 = ∑ |𝑅𝐶𝐼𝑖𝑗| = ∑ ∣ln [ 𝑋𝑖𝑗 − 𝑃𝑗(𝛼𝑖)
𝐼𝑗(𝛼𝑖) − 𝑃𝑗(𝛼𝑖)

]∣ (A-5)

where 𝛼𝑖 is examinee 𝑖’s attribute mastery pattern, 𝑃𝑗(𝛼𝑖) is the probability of
correct response for pattern 𝛼𝑖 on item 𝑗, and 𝐼𝑗(𝛼𝑖) is the ideal response (1 if
all required attributes are mastered, 0 otherwise). 𝑋𝑖𝑗 is the observed response
(0 or 1).

For each item, 𝑅𝐶𝐼𝑖 measures deviation between observed response 𝑋𝑖𝑗 and
ideal response 𝐼𝑗(𝛼𝑖). When 𝑋𝑖𝑗 = 𝐼𝑗(𝛼𝑖), 𝑅𝐶𝐼𝑖 = 0, indicating excellent fit.
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When 𝑋𝑖𝑗 ≠ 𝐼𝑗(𝛼𝑖), person-fit depends on the magnitude of differences between
𝑋𝑖𝑗 − 𝑃𝑗(𝛼𝑖) and 𝐼𝑗(𝛼𝑖) − 𝑃𝑗(𝛼𝑖). Large 𝑋𝑖𝑗 − 𝑃𝑗(𝛼𝑖) relative to 𝐼𝑗(𝛼𝑖) − 𝑃𝑗(𝛼𝑖)
suggests aberrant behavior (e.g., cheating, creative responding), yielding large
positive RCI values. Conversely, large 𝐼𝑗(𝛼𝑖) − 𝑃𝑗(𝛼𝑖) relative to 𝑋𝑖𝑗 − 𝑃𝑗(𝛼𝑖)
may indicate poor item quality or use of strategies not specified in the Q-matrix,
also producing large RCI values.

Appendix B: Q-Matrices Used in Study 1
Table B-1: Q-matrix for simulated data with 𝐾 = 6, 𝐽 = 20
Table B-2: Q-matrix for simulated data with 𝐾 = 6, 𝐽 = 40

Appendix C: Analysis of Fraction Subtraction Data Using
RCI and 𝑙𝑧 Indices
In addition to the 𝑅 index, RCI and 𝑙𝑧 were applied to the fraction subtraction
data. Results flagged 47 and 35 examinees (8.8% and 6.5%) as aberrant, respec-
tively. Notably, while 𝑅 identified only 23 aberrant cases, 1 of these was not
flagged by 𝑙𝑧 but all were flagged by RCI, suggesting 𝑅 is more “conservative”
in flagging—a desirable property for high-stakes testing where decisions require
careful consideration and multiple analytical methods. Examinee 137, flagged
by 𝑙𝑧 but not by 𝑅, showed pattern [00001011111] with estimated mastery [111],
exhibiting “warm-up”or “sleeping”behavior, corroborating 𝑙𝑧’s dependence
on item quality for detecting sleeping in short tests.

Comparing RCI and 𝑙𝑧 results, 28 examinees were flagged by both indices, rep-
resenting 80% of RCI-flagged and 60% of 𝑙𝑧-flagged cases. This proportion
confirms 𝑙𝑧’s relatively lenient flagging criteria, corresponding to its slightly
inflated Type I error rate observed in Study 1.

Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv —Machine translation. Verify with original.

chinarxiv.org/items/chinaxiv-202204.00026 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00026
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