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Abstract
In this paper, we propose and study a novel continuous-time model, based on the
well-known constant elasticity of variance (CEV) model, to describe the asset
price process. The basic idea is that the volatility elasticity of the CEV model
cannot be treated as a constant from the perspective of stochastic analysis. To
address this issue, we deduce the price process of assets from the perspective of
volatility elasticity, propose the constant volatility elasticity (CVE) model, and
further derive a more general variable volatility elasticity (VVE) model. More-
over, our model can describe the positive correlation between volatility and
asset prices existing in the commodity markets, while the CEV model can only
describe the negative correlation. Through empirical research on the financial
market, many assets, especially commodities, often exhibit this positive corre-
lation phenomenon during certain time periods, which demonstrates that our
model has strong practical application value. Finally, we provide the explicit
pricing formula for European options based on our model. This formula has an
elegant form that is convenient to calculate, which is similar to the renowned
Black-Scholes formula and is of great significance to research in the derivatives
market.
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Abstract
In this paper, we propose and study a novel continuous-time model, based on
the well-known constant elasticity of variance (CEV) model, to describe the as-
set price process. The fundamental insight is that the volatility elasticity of the
CEV model cannot be treated as a constant from the perspective of stochastic
analysis. To address this limitation, we derive the price process from the volatil-
ity elasticity viewpoint, propose the constant volatility elasticity (CVE) model,
and further develop a more general variable volatility elasticity (VVE) model.
Moreover, our model can capture the positive correlation between volatility and
asset prices that exists in commodity markets, whereas the CEV model can only
describe negative correlation. Empirical research on financial markets demon-
strates that many assets, particularly commodities, frequently exhibit this pos-
itive correlation phenomenon during certain periods, indicating that our model
has substantial practical value. Finally, we provide an explicit pricing formula
for European options under our model. This formula has an elegant and compu-
tationally convenient form similar to the renowned Black-Scholes formula, which
is of great significance for derivatives market research.

Keywords: volatility elasticity, commodity market, pricing.

1 Introduction
Continuous-time models are fundamental and powerful tools in financial market
theory, where stochastic techniques play a prominent role. For instance, in
option pricing, hedging, and portfolio research, stochastic analysis methods are
typically employed to derive explicit solutions or closed-form expressions that
provide strong guidance for practical applications.

As early as 1965, Samuelson proposed describing stock price evolution using geo-
metric Brownian motion [?, ?], establishing the classic continuous-time financial
model. In 1973, Black and Scholes applied Itô’s formula from stochastic analysis
to derive an explicit European option pricing formula based on this model—the
classical Black-Scholes formula [?, ?]. This work represented a breakthrough in
option pricing theory.

However, empirical data reveals that “volatility smile”or skew phenomena fre-
quently appear in most stock markets [?, ?]. Consequently, numerous studies
have been devoted to proposing more sophisticated continuous-time financial
models to correct volatility biases, such as the constant elasticity of variance
(CEV) model [?, ?], stochastic volatility models [?, ?], the V.G. model [?, ?],
GARCH models [?, ?], and others.
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Recently, the classical CEV model has attracted considerable attention due to
its wide applications in financial markets. In this model, volatility is negatively
correlated with price, enabling it to describe derivatives and volatility of stocks
exhibiting this inverse phenomenon [?, ?]. Additionally, many extensions based
on the CEV model have been proposed, such as [?, ?, ?, ?, ?, ?]. However, we
identify a fundamental issue with the constant elasticity assumption in the CEV
model. Before discussing this problem in detail, we first introduce the concepts
of volatility and elasticity.

1.1 Volatility and Elasticity

The volatility of financial assets is a key measure of return uncertainty, repre-
senting the risk level of financial assets. Mathematically, it is defined as the
conditional standard deviation of the return rate, expressed as:

𝑣𝑡 = √Var(𝑟𝑡+1 ∣ ℱ𝑡).

Here, 𝑟𝑡 represents the rate of return at time 𝑡, and the filtration (ℱ𝑡) encom-
passes all market information prior to time 𝑡. In this paper, we assume market
efficiency, meaning that asset prices fully reflect all available market information.
Volatility plays a crucial role in many financial market decisions, including risk
management, derivatives pricing, and portfolio optimization. Moreover, deriva-
tives based on volatility indices are becoming increasingly active in the market,
providing investors with diverse investment and hedging tools that help mitigate
risks and reduce irrational market volatility [?, ?]. In developed financial mar-
kets, various volatility indices and their derivatives are widely traded, such as
futures, options, and ETFs based on the CBOE Volatility Index (VIX). There-
fore, the study of volatility is of great significance in both theory and practice.

The concept of elasticity, first introduced by Marshall [?, ?], has been widely
used in economics. It is an important measure of how sensitive one economic
factor is to another—for example, how supply or demand changes in response to
price changes, or how demand responds to income changes. Moreover, elasticity
can help monitor risk exposure in stock markets. In this paper, we focus on the
elasticity of an asset’s volatility with respect to its price, which we call volatility
elasticity and denote by 𝜆𝑡.

According to the definition of elasticity, 𝜆𝑡 measures the sensitivity of volatility
to changes in asset price, expressed as:

𝜆𝑡 = 𝑑𝑣𝑡/𝑣𝑡
𝑑𝑆𝑡/𝑆𝑡

.

In essence, asset prices and their volatility vary according to market conditions.
More specifically, as time passes, various informational events continuously oc-
cur in the market, causing asset prices to fluctuate constantly. Therefore, the
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common driving force behind these two stochastic processes is the time scale 𝑡.
As 𝑑𝑡 → 0, the continuous formula for volatility elasticity becomes:

𝜆𝑡 = 𝑑𝑣𝑡
𝑑𝑆𝑡

⋅ 𝑆𝑡
𝑣𝑡

(1.1)

where 𝑑𝑣𝑡 and 𝑑𝑆𝑡 denote the stochastic differentials of 𝑣𝑡 and 𝑆𝑡, respectively.

1.2 Existing Problems in the CEV Model

Let 𝑆𝑡 denote the price of a risky asset. In the CEV model [?, ?], the price
process satisfies the following stochastic differential equation (SDE):

𝑑𝑆𝑡 = 𝑆𝑡𝜇𝑑𝑡 + 𝜎𝑆𝛽/2−1
𝑡 𝑑𝐵𝑡 (1.2)

where 𝜇 and 𝜎 are constants, 𝛽 ∈ (0, 2] is called the elasticity factor, and 𝐵𝑡
represents Brownian motion. It has been shown in [?, ?] that the asset price
volatility is 𝑣𝑡 = 𝜎𝑆𝛽/2−1

𝑡 and the volatility elasticity equals a constant 𝛽/2 − 1.
We note that these results are derived in a deterministic sense, where 𝑣𝑡 and 𝑆𝑡
are assumed to be deterministic variables and the derivative of 𝑣𝑡 with respect to
𝑆𝑡 is computed straightforwardly. However, according to the economic definition
of elasticity, 𝑣𝑡 and 𝑆𝑡 are intrinsically random processes in real markets. We
should use stochastic differentials to treat volatility elasticity, which cannot be
simply regarded as a constant. Consequently, the main objective of this paper
is to develop a new model based on stochastic analysis that accurately describes
real markets.

1.3 Contribution

In this paper, we design two SDE models to describe asset prices using stochastic
differential tools. The first model assumes constant volatility elasticity, which we
call the constant volatility elasticity (CVE) model. We then derive the second
model, which we call the variable volatility elasticity (VVE) model, by assuming
that elasticity is related to price. Analysis of actual market data demonstrates
that our models describe the price processes of certain assets well, particularly
commodities, providing valuable assistance for forecasting and guiding economic
decision-making in these markets. Finally, we provide an explicit option pricing
formula based on our proposed models, which is of great value for practical
applications in derivatives markets.

1.4 Organization

The remainder of this paper is organized as follows. In Section 2, we derive
the stochastic differential equation model for the asset price process under the
assumption of constant volatility elasticity. This model is then extended to the
general case of time-varying volatility elasticity in Section 3. The potential of
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our proposed models is verified through empirical research using actual market
data in Section 4. Additionally, an explicit pricing formula for European options
is presented in Section 5. Finally, we conclude the paper in the last section.

2 Constant Volatility Elasticity (CVE) Model
In this paper, we consider a market composed of two types of assets: risky and
risk-free. Without loss of generality, we assume that asset price processes in
the market are time-homogeneous Markov processes and that assets do not pay
dividends. Suppose the price process of the risk-free asset satisfies:

𝑑𝛽𝑡 = 𝑟𝛽𝑡𝑑𝑡, (2.1)

where 𝑟 is the risk-free rate.

In financial markets, stock volatility is time-varying and often exhibits volatil-
ity clustering and fat tails in the distribution of logarithmic price returns [?,
?]. According to the efficient market hypothesis and the assumption of time-
homogeneous Markov price processes, volatility can be expressed as a function
of price by definition. Let 𝑆𝑡 denote the price of the risky asset. Then we
assume 𝑆𝑡 satisfies the following stochastic process:

𝑑𝑆𝑡 = 𝑆𝑡[𝜇𝑑𝑡 + 𝜃(𝑆𝑡)𝑑𝐵𝑡], (2.2)

where 𝑆0 > 0 and 𝜇 > 0 is the instantaneous expected rate of return. We
assume that 𝜃(𝑆𝑡) satisfies appropriate conditions to guarantee the existence of
solutions. It can be readily verified that 𝜃(𝑆𝑡) is precisely the volatility function
of 𝑆𝑡. Moreover, for convenience, the instantaneous rate of return of risky assets
is simply assumed to be constant. In fact, our conclusions can easily be extended
to more general cases, as discussed in Remark 1.

Now, based on the assumption that volatility elasticity is constant, we can derive
that 𝜃(𝑆𝑡) admits a closed-form solution.

Theorem 2.1. Suppose the price of a risky asset satisfies SDE (2.2), 𝜃(𝑥) is
twice continuously differentiable, and the volatility elasticity is constant. Then:

𝜃(𝑆𝑡) = 𝐶𝑆𝛼
𝑡 (2.3)

where 𝛼 ∈ {0, 1} is the value of volatility elasticity, and 𝐶 is a positive constant.

Proof. Since the price satisfies SDE (2.2), we know that 𝜃(𝑆𝑡) is the volatility
of 𝑆𝑡. Applying Itô’s rule to 𝜃(𝑆𝑡), we obtain:
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𝑑𝑣𝑡 = 𝑑𝜃(𝑆𝑡)

= 𝜃′(𝑆𝑡)𝑑𝑆𝑡 + 1
2𝜃″(𝑆𝑡)𝑑⟨𝑆⟩𝑡

= 𝜃′(𝑆𝑡)𝑆𝑡[𝜇𝑑𝑡 + 𝜃(𝑆𝑡)𝑑𝐵𝑡] + 1
2𝜃″(𝑆𝑡)[𝑆𝑡𝜃(𝑆𝑡)]2𝑑𝑡

= 𝜃(𝑆𝑡) (𝜃′(𝑆𝑡)
𝜃(𝑆𝑡)

𝑆𝑡𝜇 + 𝜃″(𝑆𝑡)𝑆2
𝑡 𝜃(𝑆𝑡)

2 ) 𝑑𝑡 + 𝜃′(𝑆𝑡)𝑆𝑡𝑑𝐵𝑡,

which yields:

𝑑𝑣𝑡 = (𝜃′(𝑆𝑡)
𝜃(𝑆𝑡)

𝑆𝑡𝜇 + 𝜃″(𝑆𝑡)𝑆2
𝑡

𝜃(𝑆𝑡)
) 𝑑𝑡 + 𝜃′(𝑆𝑡)𝑆𝑡𝑑𝐵𝑡. (2.4)

We assume that volatility elasticity is a constant 𝛼. According to the definition
of elasticity, it follows that:

𝑑𝑣𝑡
𝑣𝑡

= 𝛼𝑑𝑆𝑡
𝑆𝑡

,

which further implies:

(𝜃′(𝑆𝑡)
𝜃(𝑆𝑡)

𝑆𝑡𝜇 + 𝜃″(𝑆𝑡)𝑆2
𝑡

𝜃(𝑆𝑡)
) 𝑑𝑡 + 𝜃′(𝑆𝑡)𝑆𝑡𝑑𝐵𝑡 = 𝛼[𝜇𝑑𝑡 + 𝜃(𝑆𝑡)𝑑𝐵𝑡].

Therefore, we can deduce that:

𝜃′(𝑆𝑡)𝑆𝑡 = 𝛼𝜃(𝑆𝑡), (2.5)

𝜃′(𝑆𝑡)
𝜃(𝑆𝑡)

𝑆𝑡𝜇 + 𝜃″(𝑆𝑡)𝑆2
𝑡

𝜃(𝑆𝑡)
= 𝛼𝜇. (2.6)

Clearly, (2.5) is an ordinary differential equation (ODE), and its solution is:

𝜃(𝑆𝑡) = 𝐶𝑆𝛼
𝑡 , (2.7)

where 𝐶 is a positive constant. Substituting (2.7) into (2.6), we have:

𝛼(𝛼 − 1)𝐶2𝑆2𝛼
𝑡 = 0. (2.8)

Since 𝑆𝑡 is not identically equal to 0, we can conclude that:
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𝛼 = 0, or 𝛼 = 1, or 𝐶 = 0. (2.9)

If 𝐶 = 0, SDE (2.2) becomes 𝑑𝑆𝑡 = 𝑆𝑡𝜇𝑑𝑡. This means that 𝑆𝑡 is the price of a
risk-free asset, which contradicts our assumption. Therefore, we obtain:

𝜃(𝑆𝑡) = 𝐶𝑆𝛼
𝑡 , (2.10)

where 𝛼 ∈ {0, 1}, and 𝐶 is a positive constant. �

Theorem 2.1 shows that when volatility elasticity is constant, its value can only
be 0 or 1. The asset price can then be expressed as either:

𝑑𝑆𝑡 = 𝑆𝑡[𝜇𝑑𝑡 + 𝐶𝑑𝐵𝑡], (2.11)

or:

𝑑𝑆𝑡 = 𝑆𝑡[𝜇𝑑𝑡 + 𝐶𝑆𝑡𝑑𝐵𝑡]. (2.12)

The first model (2.11) is simply the classical Black-Scholes model. In this case,
asset volatility is constant 𝜎 and volatility elasticity is obviously 0. We will not
discuss this trivial case further in this paper.

The second model (2.12) is similar in form to the CEV model, corresponding
to the case where 𝛽 = 4. However, it should be noted that 𝛽 lies in (0, 2]
in the CEV model [?, ?]. Therefore, our model is not a special case of the
CEV model. Since volatility elasticity is assumed constant, (2.12) is called the
Constant Volatility Elasticity (CVE) model.

Remark 1. In the proof of Theorem 2.1, the constant 𝜇 can be replaced by an
adaptive process 𝜇(𝑡) without changing the conclusion.

3 Variable Volatility Elasticity (VVE) Model
In financial markets, return series of risky asset prices often exhibit excessive
volatility and volatility clustering [?, ?]. Numerous models attempt to capture
these phenomena, such as stochastic volatility models [?, ?], GARCH [?, ?], and
EGARCH [?, ?]. In real markets, the characteristics of volatility series are often
complex and elusive. Therefore, assuming that the elasticity of volatility with
respect to price is constant is overly simplistic.

In this section, we discuss the stochastic differential equation model when volatil-
ity elasticity varies with market information. Recall that we assume market ef-
ficiency, meaning that the flow of market information is generated by the asset
price. Therefore, we naturally assume that volatility elasticity depends on the
asset price. The following theorem derives the resulting model.
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Theorem 3.1. Suppose the price of a risky asset satisfies SDE (2.2), 𝜃(𝑥) is
twice continuously differentiable, and the volatility elasticity depends on price.
Then:

𝑑𝑆𝑡 = 𝑆𝑡[𝜇𝑑𝑡 + (𝜎 + 𝐶1𝑆𝑡)𝑑𝐵𝑡]. (3.1)

where 𝜎 and 𝐶1 are positive constants.

Proof. According to the proof of Theorem 2.1, we know that the volatility of
𝑆𝑡 is 𝜃(𝑆𝑡) and:

𝑑𝑣𝑡 = (𝜃′(𝑆𝑡)
𝜃(𝑆𝑡)

𝑆𝑡𝜇 + 𝜃″(𝑆𝑡)𝑆2
𝑡

𝜃(𝑆𝑡)
) 𝑑𝑡 + 𝜃′(𝑆𝑡)𝑆𝑡𝑑𝐵𝑡. (3.2)

Suppose the volatility elasticity is 𝛼(𝑆𝑡), namely:

𝑑𝑣𝑡
𝑣𝑡

= 𝛼(𝑆𝑡)
𝑑𝑆𝑡
𝑆𝑡

, (3.3)

which implies:

(𝜃′(𝑆𝑡)
𝜃(𝑆𝑡)

𝑆𝑡𝜇 + 𝜃″(𝑆𝑡)𝑆2
𝑡

𝜃(𝑆𝑡)
) 𝑑𝑡 + 𝜃′(𝑆𝑡)𝑆𝑡𝑑𝐵𝑡 = 𝛼(𝑆𝑡)[𝜇𝑑𝑡 + 𝜃(𝑆𝑡)𝑑𝐵𝑡]. (3.4)

Therefore, we can deduce that:

𝜃′(𝑆𝑡)𝑆𝑡 = 𝛼(𝑆𝑡)𝜃(𝑆𝑡), (3.5)

𝜃′(𝑆𝑡)
𝜃(𝑆𝑡)

𝑆𝑡𝜇 + 𝜃″(𝑆𝑡)𝑆2
𝑡

𝜃(𝑆𝑡)
= 𝛼(𝑆𝑡)𝜇. (3.6)

Solving ODE (3.5), we obtain:

𝜃(𝑆𝑡) = 𝐶2 exp (∫ 𝛼(𝑆𝑡)
𝑆𝑡

𝑑𝑆𝑡) , (3.7)

where 𝐶2 is a positive constant. It is straightforward to verify that:

𝜃′(𝑆𝑡) = 𝐶2 exp (∫ 𝛼(𝑆𝑡)
𝑆𝑡

𝑑𝑆𝑡)
𝛼(𝑆𝑡)

𝑆𝑡
,

chinarxiv.org/items/chinaxiv-202203.00120 Machine Translation

https://chinarxiv.org/items/chinaxiv-202203.00120


𝜃″(𝑆𝑡) = 𝐶2 exp (∫ 𝛼(𝑆𝑡)
𝑆𝑡

𝑑𝑆𝑡) (𝛼2(𝑆𝑡) + 𝛼′(𝑆𝑡)𝑆𝑡 − 𝛼(𝑆𝑡)
𝑆2

𝑡
) .

Substituting these relationships into (3.6) yields:

𝜃2(𝑆𝑡)[𝛼2(𝑆𝑡) + 𝛼′(𝑆𝑡)𝑆𝑡 − 𝛼(𝑆𝑡)] = 0. (3.8)

Combining this with the fact that 𝜃(𝑆𝑡) > 0 implies:

𝛼2(𝑆𝑡) + 𝛼′(𝑆𝑡)𝑆𝑡 − 𝛼(𝑆𝑡) = 0. (3.9)

Solving this ODE, we obtain:

𝛼(𝑆𝑡) = 1
1 + 𝐶3𝑆𝑡

, (3.10)

where 𝐶3 is a positive constant. Therefore, we can further conclude that:

𝜃(𝑆𝑡) = 𝐶2 exp (∫ 1
𝑆𝑡(1 + 𝐶3𝑆𝑡)

𝑑𝑆𝑡) = 𝐶2(1 + 𝐶3𝑆𝑡).

The proof is completed by setting 𝐶1 = 𝐶2𝐶3 and 𝜎 = 𝐶2. �

Theorem 3.1 establishes the model for the case where volatility elasticity is not
constant but depends on price. Therefore, (3.1) is called the Variable Volatility
Elasticity (VVE) model. It is obvious that (2.12) is a special case of (3.1) when
𝜎 = 0. Consequently, we will focus on the VVE model hereafter.

3.1 Existence of Solutions

We now verify the existence of solutions to SDE (3.1) in the following lemma,
which proves that the proposed model is well-defined.

Lemma 3.2. There exists a solution to SDE (3.1), which can be expressed as:

𝑆𝑡 = 𝜎𝑆0𝑒𝛾𝑡+𝜎𝐵𝑡

𝐶1𝑆0𝑒𝛾𝑡+𝜎𝐵𝑡 − 𝜇
𝛾 𝐶1𝑆0𝑒𝜎𝐵𝑡 + 𝜎 + 𝐶1𝑆0

, (3.11)

where 𝛾 = 𝜇 − 𝜎2
2 .

Proof. We use the nonlinear transformation method to solve SDE (3.1). Sup-
pose 𝑌𝑡 = 𝐹(𝑆𝑡) where 𝐹(𝑥) is a twice continuously differentiable function.
Then it can be readily verified that:
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𝑑𝑌𝑡 = 𝐹 ′(𝑆𝑡)𝑑𝑆𝑡 + 1
2𝐹 ″(𝑆𝑡)𝑑⟨𝑆⟩𝑡

= 𝐹 ′(𝑆𝑡)[𝜇𝑆𝑡𝑑𝑡 + 𝑆𝑡(𝜎 + 𝐶1𝑆𝑡)𝑑𝐵𝑡] + 1
2𝐹 ″(𝑆𝑡)𝑆2

𝑡 (𝜎 + 𝐶1𝑆𝑡)2𝑑𝑡

= (𝜇𝐹 ′(𝑆𝑡)𝑆𝑡 + 1
2𝐹 ″(𝑆𝑡)𝑆2

𝑡 (𝜎 + 𝐶1𝑆𝑡)2) 𝑑𝑡 + 𝐹 ′(𝑆𝑡)𝑆𝑡(𝜎 + 𝐶1𝑆𝑡)𝑑𝐵𝑡.

Upon taking:

𝐹 ′(𝑥)𝑥(𝜎 + 𝐶1𝑥) = 𝜎𝐹(𝑥), (3.12)

we can obtain:

𝐹 ′(𝑆𝑡)𝑆𝑡(𝜎 + 𝐶1𝑆𝑡)𝑑𝐵𝑡 = 𝜎𝐹(𝑆𝑡)𝑑𝐵𝑡 = 𝜎𝑌𝑡𝑑𝐵𝑡.

The solution to ODE (3.12) can be represented as:

𝐹(𝑥) = 𝜎
𝜎 + 𝐶1𝑥, (3.13)

where 𝐴 is a constant. Without loss of generality, we set 𝐴 = 1. Then we have:

𝑌𝑡 = 𝜎
𝜎 + 𝐶1𝑆𝑡

. (3.14)

It is straightforward to verify that:

𝐹 ′(𝑥) = 𝜎
𝑥(𝜎 + 𝐶1𝑥)𝐹(𝑥),

𝐹 ″(𝑥) = 𝜎
𝑥(𝜎 + 𝐶1𝑥)𝐹 ′(𝑥) − 𝜎(1 + 2𝐶1𝑥/𝜎)

𝑥2(𝜎 + 𝐶1𝑥)2 𝐹(𝑥) = − 2𝐶1𝜎
𝑥2(𝜎 + 𝐶1𝑥)2 𝐹(𝑥),

which further implies:

𝜇𝐹 ′(𝑆𝑡)𝑆𝑡 = 𝜇 𝜎
𝜎 + 𝐶1𝑆𝑡

𝐹(𝑆𝑡) = 𝜇𝜎
𝜎 + 𝐶1𝑆𝑡

𝑌𝑡,

1
2𝐹 ″(𝑆𝑡)𝑆2

𝑡 (𝜎 + 𝐶1𝑆𝑡)2 = −𝐹(𝑆𝑡)𝐶1𝜎𝑆𝑡 = −𝜎𝐶1𝑆𝑡𝑌𝑡.

Thus, we can obtain:
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𝑑𝑌𝑡 = 𝑌𝑡 ( 𝜇𝜎
𝜎 + 𝐶1𝑆𝑡

− 𝜎𝐶1𝑆𝑡) 𝑑𝑡+𝜎𝑑𝐵𝑡 = 𝑌𝑡 (𝜇 − (2𝜇 + 𝜎2)𝐶1𝑌𝑡
1 − 𝐶1𝑌𝑡

+ 𝜇𝐶2
1 𝑌 2

𝑡
1 − 𝐶1𝑌𝑡

) 𝑑𝑡+𝜎𝑑𝐵𝑡.

Next, we solve the following SDE:

𝑑𝑌𝑡 = ̂𝜇(𝑌𝑡)𝑑𝑡 + 𝜎̂(𝑌𝑡)𝑑𝐵𝑡,

where 𝜎̂(𝑌𝑡) = 𝜎𝑌𝑡 and:

̂𝜇(𝑌𝑡) = 𝜇 − (2𝜇 + 𝜎2)𝐶1𝑌𝑡
1 − 𝐶1𝑌𝑡

+ 𝜇𝐶2
1 𝑌 2

𝑡
1 − 𝐶1𝑌𝑡

.

We first solve the following ODE:

𝑑𝑦(𝜔)
𝑑𝜔 = 𝜎̂(𝑦(𝜔)) = 𝜎𝑦(𝜔), 𝑌0 = 𝜉. (3.15)

The solution is 𝑦(𝜔) = 𝜉𝑒𝜎𝜔. Let Φ(𝜔, 𝜉) = 𝑦(𝜔) = 𝜉𝑒𝜎𝜔. Then we solve the
following ODE with parameter 𝜔:

𝑑𝜉𝑡
𝑑𝑡 = exp (∫

𝐵𝑡(𝜔)

0

𝑏(Φ(𝐵𝑡(𝜔), 𝜉𝑡)) − 𝜎̂(Φ(𝐵𝑡(𝜔), 𝜉𝑡)) ⋅ 𝜎̂′(Φ(𝐵𝑡(𝜔), 𝜉𝑡))
𝜎̂2(Φ(𝐵𝑡(𝜔), 𝜉𝑡))

𝑑𝐵𝑡(𝜔)) , 𝜉0 = 𝑌0.

(3.16)

In fact, the above ODE can be simplified as:

𝑑𝜉𝑡
𝑑𝑡 = 2𝑟 − 𝜎2

2 𝜉𝑡 − (2𝑟 − 𝜎2)
2𝑟𝐶1𝑒𝜎𝐵𝑡(𝜔) 𝜉2

𝑡 , 𝜉0 = 𝑌0.

It is straightforward to verify that the solution is:

𝜉𝑡(𝜔) = 𝜎𝑆0𝑒𝜎𝐵𝑡(𝜔)

(𝜎 + 𝐶1𝑆0)𝑒𝜎𝐵𝑡(𝜔) − 𝜇
𝛾 𝐶1𝑆0(𝑒𝛾𝑡+𝜎𝐵𝑡(𝜔) − 𝑒𝜎𝐵𝑡(𝜔)) ,

where 𝛾 = 𝜇 − 𝜎2
2 . Therefore:

𝑌𝑡(𝜔) = Φ(𝐵𝑡(𝜔), 𝜉𝑡(𝜔)) = 𝜎𝑆0𝑒𝛾𝑡+𝜎𝐵𝑡(𝜔)

𝐶1𝑆0𝑒𝛾𝑡+𝜎𝐵𝑡(𝜔) − 𝜇
𝛾 𝐶1𝑆0𝑒𝜎𝐵𝑡(𝜔) + 𝜎 + 𝐶1𝑆0

(3.17)

is a solution to SDE (3.15). Finally, it follows from the relationship (3.14) that:
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𝑆𝑡 = 𝜎𝑆0𝑒𝛾𝑡+𝜎𝐵𝑡

𝐶1𝑆0𝑒𝛾𝑡+𝜎𝐵𝑡 − 𝜇
𝛾 𝐶1𝑆0𝑒𝜎𝐵𝑡 + 𝜎 + 𝐶1𝑆0

, (3.18)

where 𝛾 = 𝜇 − 𝜎2
2 . This completes the proof. �

In Lemma 3.2, we skillfully apply nonlinear reduction to SDE (3.1), directly
solve the transformed SDE, and then transform the solution back to obtain the
solution of the original model. Lemma 3.2 not only proves the existence of
solutions but also provides a closed-form expression, which is highly valuable
for pricing derivatives based on our model.

3.2 Qualitative Analysis

In this subsection, we conduct a qualitative analysis of our model from an eco-
nomic perspective to demonstrate its effectiveness and significance.

Volatility. The volatility of our VVE model is 𝑣𝑡 = 𝜎 + 𝐶1𝑆𝑡, where 𝜎 and 𝐶1
are positive constants. It can describe stock markets with positive correlation
between volatility and stock price, which differs from the CEV model. This pos-
itive correlation has been investigated in the literature. For instance, Emanuel
and MacBeth [?, ?] verified its existence using real market data. They analyzed
closing price data for Avon Products, Eastman Kodak, International Business
Machines, and Xerox from 1976 to 1978. Through parameter estimation in
the CEV model, they concluded that there was a positive correlation between
volatility and price in 1978. Unlike financial securities, commodity markets
possess intrinsic physical attributes, causing commodity price fluctuations to
exhibit distinctive features.

More importantly, Geman [?, ?] points out that for the vast majority of com-
modities, volatility is positively related to price, which will be described in detail
in the next section. Therefore, our model will be highly useful for pricing and
hedging commodity derivatives.

Pricing of contingent claims. Derivatives play a crucial role in finance. Mea-
sured by underlying assets, the scale of derivatives markets far exceeds that of
stock markets. Currently, the total notional value of outstanding derivatives is
many times larger than the world’s total economic output [?, ?]. Derivative
pricing theory is one of the most important research topics in the field of deriva-
tives. Under our model, we can derive an explicit pricing formula for European
options (presented in Section 5). It is worth noting that this formula has a
form similar to the Black-Scholes pricing formula, making it easy to compute in
practice.

4 Empirical Analysis of Commodity Markets
In financial investment markets, bulk commodities refer to homogeneous, trad-
able goods widely used as basic industrial raw materials, such as crude oil,
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non-ferrous metals, steel, agricultural products, iron ore, coal, etc. They in-
clude three categories: agricultural products, metals, and energy. Commodi-
ties constitute the only spot market in human history, which is closely related
to national economies and people’s livelihoods. Since most commodities are
fundamental to industrial production, changes in their futures and spot prices
reflecting supply and demand directly affect the entire economic system. As an
important component of financial markets, research on commodities and their
derivatives is of great significance. Commodities possess both capital and goods
attributes, leading to significant differences in price characteristics compared to
securities.

In commodity markets, the theory of storage is often used to explain spot price
volatility, as the supply-demand relationship caused by the physical properties
of commodities is the primary factor affecting their price changes [?, ?]. The
most important result of storage theory is that there is a negative correlation
between inventory levels and commodity volatility. Furthermore, according to
supply-demand theory, commodity price is negatively correlated with inventory.
Therefore, there is a positive correlation between commodity price and volatility,
which distinguishes it from the negative correlation commonly observed in stock
markets.

Production capacity and inventory levels are two key factors in predicting com-
modity prices. Fama and French [?, ?] conducted statistical analysis on data
from 21 commodities (including wood, livestock, metals, and agricultural prod-
ucts) and concluded that commodity price variance decreases as inventory levels
increase. Geman and Nguyen [?, ?] used soybean data from the United States,
Brazil, and Argentina to reconstruct monthly, quarterly, and annual global soy-
bean databases, showing that commodity price volatility is an increasing linear
function of inverse inventory. Geman [?, ?] notes that this property also holds
in energy markets. When estimated oil reserves in the United States or other
regions decline, oil price volatility increases sharply, and prices rise substan-
tially. Deaton and Laroque [?, ?] analyzed and simulated annual data for 13
commodities, finding that the conditional variance of price is a non-decreasing
function of price. In summary, numerous studies demonstrate a positive corre-
lation between price and volatility in commodity markets.

Figure 1: Close price and volatility of soybean meal and aluminum.

Next, we perform an empirical study on China’s commodity markets, which
demonstrates that a linear positive correlation between volatility and commodity
price exists during many time intervals. Specifically, we select market data for
soybean meal and aluminum for analysis. For soybean meal, we use closing
price data for 263 trading days (2020/01/02–2021/01/29). For aluminum, we
use closing price data for 164 trading days (2017/08/01–2018/04/02). All data
are collected from the Wind database.

In Figure 1, the daily closing price data and historical volatility (calculated using
30-day price data and recorded as HV30) for the two commodities are depicted.
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Clearly, the trends of the two lines show a positive correlation. Furthermore, we
analyze the correlation between closing price and volatility data and conduct
linear fitting using R software. The results are shown in Table 1.

Table 1: Linear regression results of closing price and volatility data for soybean
meal and aluminum.

CommoditySlope
P-value of
Slope Intercept

P-value of
Intercept

R-
squared

Correlation
Coefficient

Soybean
Meal
(SM)

1.53e-
04

<2e-16 -
0.0015

<2e-16 0.7471 0.8644

Aluminum
(AL)

4.61e-
05

<2e-16 0.0003 <2e-16 0.8207 0.9059

We have the following observations. First, the correlation coefficients for these
two datasets are very close to 1. Second, the R-squared values for these linear
fittings are 0.7471 and 0.8207, respectively. Third, the p-values for both slope
and intercept are less than 0.01. Thus, during this time interval, the price and
volatility of these two commodities exhibit a linear positive correlation, which
is consistent with the VVE model. We can conclude that the VVE model can
serve as an approximate continuous-time model for commodity prices, which is
helpful for studying commodity and commodity derivatives markets.

5 Option Pricing
In this section, we consider option pricing under the VVE model (3.1). The
following theorem provides an explicit pricing formula for European call options.

Theorem 5.1. Suppose the market is complete and there exists a unique
equivalent martingale measure. Let 𝜉 = (𝑆𝑇 − 𝐾)+ be a replicable European
contingent claim, where 𝐾 is the strike price. Then its price process is 𝑉𝑡 =
𝐶(𝑡, 𝑆𝑡), where:

𝐶(𝑡, 𝑥) = 𝜎𝑆0𝑒−𝑟(𝑇 −𝑡)𝔼[𝑔(𝑍)1(𝑑,+∞)] − 𝐾𝑒−𝑟(𝑇 −𝑡)(1 − 𝑁(𝑑)).

Here:

𝛿 = 𝑟
𝜎 (𝑟 − 𝜎2/2

𝑟 − 𝜎2/2 − 1) ,

𝑑 = 𝑓−1
𝑇 (𝐾) − 𝑓−1

𝑡 (𝑥)√
𝑇 − 𝑡

,
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𝑔(𝑧) = 𝜎𝑆0𝑒−𝑟(𝑇 −𝑡)

(𝛿 − 1 − 𝛿𝑒−𝑟𝛿𝑇 )𝐶1𝑆0 + (𝜎 + 𝐶1𝑆0)𝑒−𝜎(𝑧+𝑓−1
𝑡 (𝑥)) ,

𝑓−1
𝑡 (𝑥) =

ln ( 𝜎+𝐶1𝑥
𝜎 ) − (𝑟 − 𝜎2/2)𝑡

𝜎 ,

and 𝑍 follows a standard normal distribution, with 𝑁(𝑑) denoting the standard
normal cumulative distribution function.

Proof. Since we assume the market is complete, the discounted price process
(𝑒−𝑟𝑡𝑆𝑡) is a martingale under the risk-neutral probability measure ℙ∗. In fact,
ℙ∗ can be defined as:

𝑑ℙ∗

𝑑ℙ ∣
ℱ𝑇

= exp (− ∫
𝑇

0

𝜇 − 𝑟
𝜎 + 𝐶1𝑆𝑢

𝑑𝐵𝑢 − 1
2 ∫

𝑇

0
( 𝜇 − 𝑟

𝜎 + 𝐶1𝑆𝑢
)

2
𝑑𝑢) .

According to Girsanov’s theorem, we have that:

𝐵∗
𝑡 = 𝐵𝑡 + ∫

𝑡

0

𝜇 − 𝑟
𝜎 + 𝐶1𝑆𝑢

𝑑𝑢

is a Brownian motion under ℙ∗, and SDE (3.1) becomes:

𝑑𝑆𝑡 = 𝑆𝑡[𝑟𝑑𝑡 + (𝜎 + 𝐶1𝑆𝑡)𝑑𝐵∗
𝑡 ]. (5.1)

It follows from Lemma 3.2 that the solution of (5.1) is:

𝑆𝑡 = 𝜎𝑆0𝑒(𝑟−𝜎2/2)𝑡+𝜎𝐵∗
𝑡

𝐶1𝑆0𝑒(𝑟−𝜎2/2)𝑡+𝜎𝐵∗
𝑡 − 𝑟

𝑟−𝜎2/2 𝐶1𝑆0𝑒𝜎𝐵∗
𝑡 + 𝜎 + 𝐶1𝑆0

=∶ 𝑓𝑡(𝐵∗
𝑡 ). (5.2)

According to the risk-neutral pricing formula, the price of the replicable Euro-
pean contingent claim 𝜉 at time 𝑡 is:

𝑉𝑡 = 𝔼∗ [𝑒−𝑟(𝑇 −𝑡)(𝑆𝑇 − 𝐾)+ ∣ ℱ𝑡] .

By the Markov property of the diffusion process (𝑆𝑡), we have:

𝑉𝑡 = 𝔼∗ [𝑒−𝑟(𝑇 −𝑡)(𝑆𝑇 − 𝐾)+ ∣ 𝑆𝑡] .

Thus, we can denote 𝑉𝑡 = 𝐶(𝑡, 𝑆𝑡). Then:
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𝐶(𝑡, 𝑥) = 𝔼∗ [𝑒−𝑟(𝑇 −𝑡)(𝑆𝑇 − 𝐾)+ ∣ 𝑆𝑡 = 𝑥]
= 𝑒−𝑟(𝑇 −𝑡)𝔼∗ [(𝑓𝑇 (𝐵∗

𝑇 ) − 𝐾)+ ∣ 𝐵∗
𝑡 = 𝑓−1

𝑡 (𝑥)]

= 𝑒−𝑟(𝑇 −𝑡) ∫
∞

𝑓−1
𝑇 (𝐾)

(𝑓𝑇 (𝑦) − 𝐾) ⋅ 𝑝𝐵∗(𝑡, 𝑓−1
𝑡 (𝑥); 𝑇 , 𝑦)𝑑𝑦

= 𝑒−𝑟(𝑇 −𝑡) ∫
∞

𝑓−1
𝑇 (𝐾)

𝜎𝑆0𝑒(𝑟−𝜎2/2)𝑇 +𝜎𝑦

𝐶1𝑆0𝑒(𝑟−𝜎2/2)𝑇 +𝜎𝑦 − 𝑟
𝑟−𝜎2/2 𝐶1𝑆0𝑒𝜎𝑦 + 1 ⋅ 𝑒− (𝑦−𝑓−1𝑡 (𝑥))2

2(𝑇−𝑡)

√2𝜋(𝑇 − 𝑡)
𝑑𝑦

− 𝐾𝑒−𝑟(𝑇 −𝑡) ∫
∞

𝑓−1
𝑇 (𝐾)

𝑒− (𝑦−𝑓−1𝑡 (𝑥))2
2(𝑇−𝑡)

√2𝜋(𝑇 − 𝑡)
𝑑𝑦

= 𝜎𝑆0𝑒−𝑟(𝑇 −𝑡) ∫
∞

𝑓−1
𝑇 (𝐾)

𝑒𝜎𝑦− (𝑦−𝑓−1𝑡 (𝑥))2
2(𝑇−𝑡)

(𝛿 − 1)𝐶1𝑆0𝑒𝑟𝛿𝑇 +𝜎𝑦 − 𝛿𝐶1𝑆0𝑒𝜎𝑦 + 1
𝑑𝑦

√2𝜋(𝑇 − 𝑡)
− 𝐾𝑒−𝑟(𝑇 −𝑡)(1 − 𝑁(𝑑))

= 𝜎𝑆0𝑒−𝑟(𝑇 −𝑡) ∫
∞

𝑑

𝑒− 𝑧2
2

(𝛿 − 1 − 𝛿𝑒−𝑟𝛿𝑇 )𝐶1𝑆0 + (𝜎 + 𝐶1𝑆0)𝑒−𝜎(𝑧+𝑓−1
𝑡 (𝑥))

𝑑𝑧√
2𝜋

− 𝐾𝑒−𝑟(𝑇 −𝑡)(1 − 𝑁(𝑑))
= 𝜎𝑆0𝑒−𝑟(𝑇 −𝑡)𝔼[𝑔(𝑍)1(𝑑,+∞)] − 𝐾𝑒−𝑟(𝑇 −𝑡)(1 − 𝑁(𝑑)),

where:

𝛿 = 𝑟
𝜎 (𝑟 − 𝜎2/2

𝑟 − 𝜎2/2 − 1) ,

𝑑 = 𝑓−1
𝑇 (𝐾) − 𝑓−1

𝑡 (𝑥)√
𝑇 − 𝑡

,

𝑔(𝑧) = 𝜎𝑆0𝑒−𝑟(𝑇 −𝑡)

(𝛿 − 1 − 𝛿𝑒−𝑟𝛿𝑇 )𝐶1𝑆0 + (𝜎 + 𝐶1𝑆0)𝑒−𝜎(𝑧+𝑓−1
𝑡 (𝑥)) ,

𝑓−1
𝑡 (𝑥) =

ln ( 𝜎+𝐶1𝑥
𝜎 ) − (𝑟 − 𝜎2/2)𝑡

𝜎 ,

and 𝑍 follows a standard normal distribution, with 𝑁(𝑑) denoting the standard
normal cumulative distribution function. �
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6 Conclusion
In this paper, we demonstrate that the volatility elasticity of the CEV model can-
not be simply treated as a constant. To address this issue, we employ stochastic
analysis tools to derive a stochastic differential equation model when volatility
elasticity is constant. Since volatility elasticity for most risky assets is not fixed,
we then extend this model to the general case of time-varying volatility elas-
ticity. Our model can capture the positive correlation between volatility and
asset price that frequently occurs in commodity markets, in contrast to the CEV
model which can only describe negative correlation. These theoretical findings
are validated using actual market data. Furthermore, we derive an explicit pric-
ing formula for European options based on our model, which has a form similar
to the Black-Scholes formula and is computationally convenient. This formula
has important guiding significance for the practical application of derivatives
pricing in commodity markets.
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