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Abstract

The regionalization problem involves partitioning a specific geographic region
into several spatially contiguous zones to satisfy the fundamental principle of
minimizing intra-zone differences while maximizing inter-zone differences, and
finds wide applications in geography, environmental science, ecology, economics,
agriculture, urban studies, and other fields. Over the past 60-plus years, schol-
ars have attempted to establish various mathematical models for regionalization
problems and have designed a series of solution algorithms, including exact algo-
rithms, clustering-based algorithms, heuristic algorithms, and tree graph-based
algorithms. To address the limitation that existing algorithms struggle to si-
multaneously achieve computational efficiency and solution quality, this paper
proposes a regionalization algorithm based on Iterated Local Search (ILS). The
main mechanisms of this algorithm include: improving zone quality through
neighborhood unit movement; accelerating computational speed by rapidly cal-
culating zone variance with reference to central units; employing a perturba-
tion mechanism to escape local optima; updating zone centroids to enhance the
objective value of zoning schemes; and utilizing population search to explore
a larger solution space; throughout all algorithmic steps, spatial contiguity of
zones is maintained through zone repair. Testing on 55 benchmark cases demon-
strates that the ILS algorithm achieves superior solution quality compared to the
ARISEL and SKATER algorithms, while requiring significantly less computa-
tional time than the ARISEL algorithm. A multi-criteria climate regionalization
experiment further validates the practical utility of the ILS algorithm. The ILS
algorithm presented in this paper balances both zone quality and computational
efficiency, and permits a single zone to contain multiple spatially contiguous and
relatively large regions, thereby offering flexibility and practicality.
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Abstract

Regionalization involves partitioning a specific geographic area into several spa-
tially contiguous zones that minimize intra-regional variation while maximizing
inter-regional differences. This fundamental principle finds extensive applica-
tions across geography, environmental science, ecology, economics, agriculture,
urban planning, and related fields. Over the past six decades, scholars have
attempted to establish various mathematical models for regionalization prob-
lems and have designed a series of solution algorithms, including exact meth-
ods, clustering-based approaches, heuristic algorithms, and tree-based methods.
Addressing the limitation that existing algorithms struggle to balance compu-
tational efficiency with solution quality, this paper proposes a regionalization
algorithm based on Iterated Local Search (ILS). The key mechanisms of this
algorithm include: improving partition quality through neighboring unit move-
ment; accelerating computation by rapidly calculating partition variance with
reference to central units; employing perturbation mechanisms to escape lo-
cal optima; updating partition centers to enhance objective values; utilizing
population-based search to explore larger solution spaces; and maintaining spa-
tial contiguity through partition repair operations at each step. Testing on 55
benchmark cases demonstrates that the ILS algorithm achieves superior solution
quality compared to ARISEL and SKATER algorithms while requiring substan-
tially less computational time than ARISEL. A multi-indicator climate region-
alization experiment further validates the practical utility of the ILS algorithm.
The proposed ILS algorithm balances partition quality and computational ef-
ficiency, and allows a single partition to contain multiple spatially contiguous
and relatively large areas, offering both flexibility and practicality.

Keywords: regionalization problem; iterative local search; benchmark testing;
case study

1 Research Background

Regionalization represents a fundamental problem in geography. It involves ob-
serving and studying regional complexes from a spatial perspective, exploring
the formation, development, differentiation, combination, division, and merging
of regional units, and synthesizing processes and types into a coherent frame-
work [?]. Over the past century, significant advances have been made in re-
gionalization theory, methodology, and applications, with widespread use in
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geography, environmental science, ecology, economics, agriculture, urban plan-
ning, cartography, and spatial statistics. With China’ s rapid socio-economic
development, regionalization remains a foundational research area essential for
strategic decision-making, planning, management, and policy formulation at
national and regional levels.

Since the 1960s, regionalization research has focused on two major challenges:
establishing theoretical foundations and determining partition boundaries. The
former relies on understanding spatial patterns, structures, processes, mecha-
nisms, and heterogeneity patterns of geographic phenomena to define regional-
ization objectives, principles, and indicators. The latter constitutes quantitative
analysis, employing cartography, spatial analysis, spatial clustering, and spatial
optimization to scientifically delineate boundaries. Liu et al. (2005) conducted
an in-depth analysis of key scientific and technical issues in developing China’
s comprehensive regionalization scheme [?], while Zheng et al. (2008) elabo-
rated on the connotation of physical geographic regionalization and proposed
paradigms and key scientific questions [?], providing valuable guidance for re-
gionalization across various domains.

The regionalization problem involves partitioning a specific geographic area into
several spatially contiguous regions that minimize intra-regional differences and
maximize inter-regional differences. Essentially, it is a clustering problem with
added spatial contiguity constraints. Since clustering problems are already com-
putationally complex, the spatial contiguity constraint makes regionalization
even more challenging. Since the 1960s, scholars have developed various math-
ematical models and algorithms, including exact methods, clustering-based ap-
proaches, metaheuristic algorithms, tree-based methods, and hybrid heuristics
[?]. However, these algorithms suffer from notable limitations: exact methods
have excessive computational complexity; classical clustering algorithms strug-
gle to handle spatial contiguity; tree-based methods rely solely on adjacency
relationships, making it difficult to ensure regionalization quality after parti-
tioning; and metaheuristic algorithms, while producing good solutions, require
excessive computation time. To address these limitations, this paper proposes
a new regionalization algorithm that ensures both solution quality and reduced
computational complexity.

2 Literature Review

Regionalization problems are also known as spatial classification problems, spa-
tial clustering problems, spatial aggregation problems, spatial districting prob-
lems, or zone design problems. Despite terminological differences, these concepts
share the same essential goal: partitioning geographic space into regions that
satisfy specific constraints to determine optimal zoning schemes.

The complexity of mathematical modeling and solving regionalization problems
primarily stems from spatial contiguity constraints. Scholars have formally de-
fined decision variables, constraints, and objective functions for various region-
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alization needs, proposing multiple mathematical models [?, ?, 7, ?, 7, 2, 7 ?].
Keane (1975) proved that regionalization problems with spatial contiguity con-
straints are NP-Hard [?], making them extremely computationally demanding.

The p-regions problem, which partitions n spatial units into p contiguous regions,
represents a classic regionalization problem. It can be expressed through three
mixed-integer programming (MIP) formulations: tree models, order models, and
network flow models [?]. However, exact algorithms based on mathematical
models can only solve small-scale problems with few spatial units. For instance,
CPLEX computations show that for benchmark cases with n =49 and p = 3 ~
10, optimal solutions cannot be obtained within three hours [?].

Clustering-based regionalization methods include classical clustering analysis,
distance-weighted clustering, M-means clustering, and agglomerative hierarchi-
cal clustering. The first three approaches are conceptually simple but inadequate
for handling spatial contiguity, often sacrificing partition quality to ensure con-
tiguity. Classical hierarchical clustering has been more successfully applied to
regionalization through the following process: (1) initially treat each spatial unit
as a separate region; (2) compute similarity between regions; (3) merge the most
similar contiguous regions; and (4) repeat steps (2) and (3) until reaching the
target number of regions. Various methods exist for computing inter-regional
similarity in step (2), such as minimizing variance (Ward), similarity between
closest units (single linkage), similarity between most dissimilar units (complete
linkage), and similarity based on mean or median values (average linkage). Step
(3) restricts merging to adjacent regions to maintain contiguity. This bottom-up
merging strategy suits problems with uncertain numbers of regions, though the
similarity computation method and spatial adjacency constraints significantly
influence the resulting cluster tree [?].

Heuristic regionalization algorithms operate by first constructing a feasible so-
lution and then iteratively improving it through neighborhood operators. The
AZP method, proposed by Openshaw (1977), represents a classic approach that
initially partitions n spatial units randomly into k regions, then attempts to
reassign units to different regions while respecting contiguity constraints [?]. Es-
sentially a hill-climbing algorithm, AZP’ s search process easily becomes trapped
in local optima.

To avoid local optima in neighborhood search, scholars have continuously im-
proved algorithms by incorporating metaheuristic mechanisms such as simu-
lated annealing [?, ?] and tabu search [?] to enhance search diversity and obtain
higher-quality solutions. Duque and Church (2004) enhanced the tabu search
algorithm to create ARISEL, which generates multiple initial regionalization
solutions and selects high-quality ones for tabu search [?].

To reduce computational complexity, researchers have proposed tree-based
heuristic algorithms that abstract regions as network graphs, simplify them
into trees, and obtain contiguous regions through tree partitioning. Tree
nodes represent spatial units, while edges represent adjacency relationships [?].
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Maravalle and Simeone (1995) proposed the MIDAS algorithm, which generates
tree T from graph G, deletes p—1 connections to obtain p subtrees representing
contiguous regions [?]. Since the solution space on tree T is limited, MIDAS
continuously adjusts T to T™* to improve solutions. Subsequently, Assungio et
al. (2006) developed the SKATER algorithm based on minimum spanning trees
[?]. Guo (2008) improved this approach with the REDCAP algorithm, propos-
ing six dynamic tree generation methods: First-Order-SLK, First-Order-CLK,
First-Order-ALK, Full-Order-SLK, Full-Order-CLK, and Full-Order-ALK,
finding that Full-Order-CLK and Full-Order-ALK outperformed other methods

[7].

Overall, clustering algorithms are simple to implement but either fail to guar-
antee spatial contiguity or sacrifice global optimization quality to maintain it.
Heuristic algorithms are numerous with straightforward improvement strate-
gies but limited optimization performance. Metaheuristic methods achieve
higher performance but involve complex designs and low computational effi-
ciency. Tree-based methods significantly improve efficiency but drastically re-
duce the search space, compromising regionalization quality. Aydin et al. (2021)
designed benchmark test cases to evaluate AZP, AZP-SA, AZP-Tabu, ARISEL,
SKATER, and REDCAP algorithms, finding that ARISEL achieved the highest
overall quality but with slow computation, while SKATER offered good solu-
tion quality with very high efficiency [?]. Given the expanding applications
of regionalization and its significant impact on regional planning and decision-
making, developing more effective algorithms that ensure both quality and rapid
computation is essential.

3 Problem Definition

Consider a geographic region consisting of n spatial units, denoted as set U =
{1,2,3...n}. Each unit has m attributes, denoted as set A = {1,2,3...m},
where unit ¢ has attribute values a;;, a;9, ;3 ... @;,,,- The region is to be par-
titioned into p spatially contiguous regions, denoted as set C' = {1,2,3...p},
where region ¢ contains geographic units c;, satisfying ¢; N¢c; = o(i # j) and
cUcyUcgU... ¢, = U, meaning any two regions do not overlap and each spatial
unit must be assigned to a specific region. The objective is to minimize the sum
of within-region variance of unit attributes:

f(C) = Z Z Z(%k — ay,)°

ieC jec; ke A

where a;;, in Equation (1) represents the mean value of attribute k for all units
in region 4.

Several practical considerations arise in regionalization practice. First, given
differences in meaning and dimensionality among attributes, standardized unit
attribute values are typically employed. Common standardization methods in-
clude standard deviation normalization, min-max scaling, and linear proportion
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methods. Second, acknowledging that attributes may have varying importance,
weights can be assigned to each attribute. Let b,;, b9, b;5 ... b;,,, denote the stan-
dardized attribute values for unit ¢, and let w,, represent the weight of attribute
k. The regionalization objective function becomes:

f(C) = Z Z Zwk(bjk —b;p,)?

1€C keA jec;
Generally, an R? metric can be calculated for each attribute to evaluate partition

quality:

ZieC Zjeci wk(bjk - bik)2
ZjeU ZkeA wk(bjk — by,)?

Ri=1

where by, is the mean value of attribute k. If standard deviation normalization
is used, the mean b, = 0. Additionally, an overall R? metric can be computed
to evaluate partition quality:

ZjeU ZkeA wk(bjk — by,)?

4 Algorithm Design

Solving regionalization problems presents several challenges. First, as defined
herein, the regionalization problem is a clustering problem with added spatial
contiguity constraints, making it considerably more complex. Spatial contiguity
judgment and repair constitute two frequently performed operations in region-
alization algorithms. Second, computing the mean Bik for region 4 in objective
function (2) is computationally expensive, potentially reducing algorithm effi-
ciency. To accelerate computation, attribute values of region centers can replace
the means T)i .- Determining center points for each region facilitates rapid evalua-
tion of solution quality. Based on this analysis, this paper adopts a center-based
regionalization algorithm while maintaining spatial contiguity of each region.

The Iterated Local Search (ILS) algorithm is selected as the framework for solv-
ing the regionalization problem. The ILS algorithm is conceptually simple, easy
to implement, and effective for discrete optimization problems [?]. Starting
from an initial solution, the algorithm iteratively performs perturbation and
local search. Since local search easily becomes trapped in local optima, pertur-
bation of the current position enables escape from these optima. Initial solution
generation, local search, and perturbation constitute the basic modules of ILS.
To enhance optimization performance, this paper extends the single-solution ILS
to a population-based ILS. The improved ILS algorithm proceeds as follows:
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Parameters: population size (psize), perturbation strength (strength), maxi-
mum non-improving iterations (mloops).

Pop = GeneratelnitialSolutions(psize);

Spe = Best(Pop);

notImpr = 0;

while notImpr < mloops do

Select a solution $s$ from $P$ randomly;
$s' = Perturbation(s, strength)$;

$s'' = LocalSearch(s"') $;

$s™* = updateCenters(s'')$;

S T T o o

*xkifx*x $f(s7*) < £(s_{best})$: $s_{best}=s"*$, $notImpr=0$;

H
e

else: notImpr+ = 1;

—_
—_

. Pop = UpdatePopulation(Pop, s*);

[t
[N}

. end while
13. Output s.

Step (1) employs the classic K-medoids algorithm to generate initial solutions.
This algorithm randomly selects p spatial units as region centers and iteratively
performs unit assignment and center updates until no centers change. Assign-
ment is computationally simple, as each unit is assigned to its nearest center.
However, due to study area shape and spatial distribution of geographic features,
the resulting partitions may not guarantee spatial contiguity, necessitating con-
tiguity judgment and repair operations.

Step (7) uses boundary unit movement for local search. This method attempts
to move a boundary unit to an adjacent region, updating the current solution
if the move reduces the regionalization objective. This operation must consider
spatial contiguity to ensure the contiguity constraint remains satisfied after unit
movement.

Step (6) performs solution perturbation. Common perturbation methods in-
clude destroying several regions, destroying a contiguous area, or destroying a
proportion of boundary units, followed by solution repair. If repaired partitions
fail to maintain spatial contiguity, additional contiguity repair is performed.

Compared to single-solution search algorithms, the improved ILS maintains a
population of solutions. First, step (1) generates a set of initial solutions. Sec-
ond, in each iteration, a solution is randomly selected from the population as
the current solution for search (step 5). Third, after searching, the population
is updated with the new solution (step 11). In population updating, solution
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quality is prioritized, followed by solution diversity, maintaining sufficient dif-
ferences among population members. The population-based ILS maintains a
set of diverse elite solutions, expanding the search space and improving solution
quality, though convergence speed typically decreases and computation time
increases moderately.

Since the algorithm evaluates partition objectives based on center units, step (8)
attempts to update center units after local search to further reduce the objective
value.

Spatial contiguity judgment is a critical step in regionalization algorithms. This
paper uses spanning trees to assess partition contiguity [?, ?]. If all units in a
partition can form a spanning tree, the partition is contiguous. Considering
special cases, this paper allows a partition to contain two or more relatively
large contiguous areas. In Figure 1 (left), the blue, brown, and green partitions
each consist of two parts. All blue and brown components have sufficiently large
areas, making them acceptable as spatially contiguous partitions. However, in
the green partition, one component is too small and is considered a spatially
discontinuous fragmented unit. The contiguity judgment method proceeds as
follows: (1) for a given partition, construct a spanning tree starting from any
unit; (2) if some units cannot connect to the spanning tree, construct a new
spanning tree for the remaining units; (3) repeat step (2) until no units remain;
(4) compute the number of units and area for each spanning tree—if any tree’
s unit count or area falls below a specified threshold, the region is considered
discontinuous, and the corresponding units are identified as fragmented. For dis-
continuous partitions, fragmented units must be repaired by reassigning them
to the nearest adjacent partition. In the left panel of Figure 1, the green par-
tition contains a small patch of 5 units that can be treated as fragmented and
reassigned to the neighboring blue partition, with the repaired partition shown
in the right panel.

5.1 Benchmark Testing

Algorithm testing employs the benchmark case set provided by Aydin et
al. (2021) [?]. This case set is generated from three regular grid maps with
sizes of 120 (10$x12),300(15x%20), and1200(30x40)cells. T hesemapsarepre —
partitionedintoregions, andattributevalues foreachcellaresimulatedbasedonthepartitions. Regionalizationisy
grid map, irregularly shaped region cases are simulated with 5 regions and
a simulation parameter of 3. In total, 55 regionalization cases are generated,
with cell attribute values randomly simulated 100 times for each case. The
simulation method assigns a mean attribute value to each region, sets adjacent
region mean differences using parameters 2, 3, or 4, and simulates cell attribute
values from a normal distribution with variance 1. Table 1 summarizes the
benchmark cases, with detailed descriptions available in Aydin et al. (2021) [?].
Data and results for six algorithms, along with quality metrics and computation
times, are available at https://doi.org/10.6084/m9.figshare.14067239.
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Table 1. Characteristics of the benchmark instances

Map Grid Region Region Simulation Simulation
Name Size Shape Count Parameter Runs

G120 10$x12|A, Bisgifai5|2, 3,4/100||G300§15% 20| A, B|5, 10, 15[2, 3, 4/100||G1200|30%x 40| A, B|5, 10, 15[2,.

To visually understand the cases, Figure 2 illustrates four regionalization
schemes: G120-5A, G300-10B, G1200-15A, and Blob. Scheme names combine
map name, region count, and region shape. Figure 3 shows simulated values
for these four schemes using simulation parameters 4, 2, 3, and 3, respectively,
where color intensity represents attribute magnitude. Larger simulation param-
eters create greater differences between regions, making the pre-defined regions
easier to identify; conversely, smaller parameters produce more challenging
cases.

For each of the 100 simulations per case, the ILS algorithm is applied to obtain
100 regionalization solutions, computing the Adjusted Rand Index (ARI) and
R? metric for each solution. ARI measures similarity between the obtained
partition and the true partition, with values closer to 1 being better. The R?
metric measures the relative magnitude of within-region variance, with values
closer to 1 indicating better performance.

Table 2 presents the mean ARI and R? values across 100 runs for each case,
comparing ILS with SKATER and ARISEL algorithms (with ARISEL and
SKATER results taken from [?]). The results show that ILS generally outper-
forms ARISEL, which in turn outperforms SKATER. For difficult cases with
simulation parameter 2, ILS demonstrates particularly significant advantages.

Table 2. ARI and R? indexes from 55 benchmark instances
[Table content showing comparative metrics across all case configurations-|

For the Blob case shown in Figure 3, ILS advantages are even more pronounced.
Figure 4 displays two ILS solutions (left) and two SKATER solutions from Ar-
cGIS 10.3 (right). ILS nearly perfectly recovers the pre-defined partitions, while
SKATER confuses some regions. ArcGIS computation time is approximately
2.5-2.7 seconds, while ILS requires 5.1-7.1 seconds. The four regionalization
metrics in Figure 4 are 0.872, 0.891, 0.567, and 0.719.

Table 3 compares computation times across the three algorithms (with ARISEL
and SKATER times from [?]). The results indicate: (1) SKATER implemented
in ArcGIS is fastest, with modest time increases as case size grows; (2) ARISEL
requires the most time, with rapid time increases as case size grows; (3) ILS com-
putation time exceeds SKATER but is substantially lower than ARISEL. Note
that different computational environments prevent direct time comparisons, but
the times reflect general algorithm efficiency.

Table 3. Comparison of the computation times
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[Table content showing time comparisons across algorithms and case sizes-]

5.2 Climate Regionalization of the Huang-Huai-Hai Region

To further test the algorithm, the Huang-Huai-Hai region is selected for climate
regionalization. This region includes the Yellow River, Huai River, and Hai
River basins plus the Shandong Peninsula. The study uses 30-year average
annual precipitation and temperature data at 15-arcminute resolution. The case
area comprises 2,478 spatial units, as shown in Figure 5. Each unit contains
60 attribute values: 30 annual precipitation values and 30 annual temperature
values.

Both ArcGIS 10.3 SKATER and the proposed ILS algorithm are applied for
climate regionalization, with region counts set to 3, 4, 5, 6, 7, 8, 9, 10, 12, and
15. All attributes are equally weighted at 1. Both algorithms apply standard
deviation normalization to the 60 attributes. After regionalization, R? metrics
are computed for each individual attribute and for the standardized data overall.

Table 4 presents R? metrics for both algorithms, including minimum (MinR2),
average (AvgR2), and maximum (MaxR2) values across the 60 attributes, plus
overall R? and computation time. ILS demonstrates significantly higher region-
alization quality metrics than SKATER, though SKATER maintains a substan-
tial lead in computational efficiency.

Table 4. The R? indexes from the case study area
[Table content showing comparative metrics for different region counts:-]

Figure 6 shows regionalization results for six regions from both algorithms. The
results differ substantially in region shape, size, and boundaries. SKATER
produces blocky regions, while ILS generates more strip-like regions that align
with the overall spatial patterns of temperature, precipitation, and topography.
The R? metric for ILS (0.855) significantly exceeds that of SKATER (0.804).
SKATER’ s focus on similarity between adjacent units, without considering
relationships between non-adjacent units, creates limitations. ILS overcomes
SKATER’ s local focus, thereby improving regionalization quality.

6 Conclusion

This paper proposes an improved ILS algorithm for solving regionalization
problems. The algorithm comprises initial solution generation, local search,
population-based search, solution perturbation, and center update components,
with spatial contiguity judgment and repair operations ensuring all partitions
remain contiguous. By evaluating partition objectives based on center points,
the algorithm substantially reduces objective function computation and im-
proves efficiency. Population search, perturbation, and center updates expand
the solution space and enhance partition quality. Benchmark testing demon-
strates that the improved ILS algorithm produces superior results compared
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to SKATER and ARISEL algorithms. For multi-attribute climate regionaliza-
tion without clear boundaries, ILS achieves significantly better objective values
than SKATER, with results consistent with regional patterns of topography,
temperature, and precipitation.

The improved ILS algorithm design offers several distinctive features and advan-
tages. First, compared to AZP, AZP-SA, AZP-Tabu, and ARISEL, ILS uses
partition centers for objective computation, avoiding frequent calculation of
within-region attribute means during local search and dramatically improving
computational efficiency. Second, while AZP is a simple heuristic and AZP-
SA/AZP-Tabu are metaheuristics that improve search strategy and quality,
ARISEL uses multiple initial solutions and selects high-quality ones for tabu
search to expand the search space. The improved ILS employs population-based
search, perturbation, and center updates, distinguishing it from existing designs
and leveraging established optimization mechanisms. Third, SKATER consid-
ers only similarity between adjacent units, drastically reducing search space and
achieving high efficiency, while REDCAP considers only inter-regional similar-
ity and performs bottom-up clustering. ILS overcomes the short-sightedness of
SKATER and REDCAP through search and perturbation, facilitating discovery
of high-quality partitions. These characteristics ensure both partition quality
and reduced computational complexity.

Given the spatial gradualness of geographic phenomena, complexity of geo-
graphic systems, and scale-dependency of spatial differentiation patterns, appli-
cation of this regionalization algorithm should be grounded in regional research:
understanding geographic patterns and processes, comprehending regional char-
acteristics, clarifying regionalization tasks and objectives, and selecting appro-
priate indicators. Future research directions include determining optimal region
counts, selecting data standardization methods, choosing appropriate dissimilar-
ity functions, and developing general regionalization methods and software tools
based on this algorithm.
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