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Abstract
Geomorphological objects often exhibit significant size disparities, spanning spe-
cific spatial scales. Existing automatic classification methods for geomorpholog-
ical forms have not adequately accounted for this characteristic, thereby con-
straining classification accuracy. By employing the size of geomorphological
forms as a scaling criterion, we propose a multi-scale integrated classification
method that addresses the scale-spanning nature of geomorphological objects.
This method comprises three steps: multi-scale segmentation, scale-sequential
screening, and multi-scale merging. Specifically, scale-sequential screening con-
stitutes an iterative confirmation process for objects to be classified, grounded
in multi-scale feature extraction and supervised classification, and governed by
the principles of small-scale (small-size) priority and probability maximization.
Experimental results from the Loess Plateau demonstrate that the proposed
method is both straightforward and reliable (achieving an overall accuracy of
75.16% and a Kappa coefficient of 0.71), and is suitable for refined classification
of geomorphological forms.
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Abstract

Landform objects often exhibit vastly different sizes, spanning specific spatial
scales. Existing automatic landform classification methods have not fully ac-
counted for this characteristic, which constrains classification accuracy. This
study proposes a multi-scale integrated classification method for landforms that
addresses scale-spanning characteristics. The method consists of three steps:
multi-scale segmentation, screening according to scale order, and multi-scale
merging. The screening step is an iterative confirmation process for classified
objects based on multi-scale feature extraction and supervised classification,
guided by the principles of small-scale (small-size) priority and probability max-
imization. Experimental results from the Loess Plateau demonstrate that the
method is simple and reliable, achieving an overall accuracy of 75.16% and a
Kappa coefficient of 0.71, making it suitable for detailed landform classification.
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1 Introduction
Landforms refer to the objective geometric characteristics of the Earth’s surface
and represent boundary conditions for the formation and evolution of numerous
natural and anthropogenic processes. Landform classification is a subjective
process of dividing different types of landforms according to specific criteria,
widely applied in ecological modeling and landslide prevention. Landform clas-
sification typically utilizes digital elevation models (DEM) or other data sources
and includes both manual and automatic implementation approaches. Manual
classification offers high accuracy but suffers from slow speed, high cost, and
poor repeatability. Automatic classification can be further divided into pixel-
based and object-based approaches. The latter, which uses image segmentation
units as classification objects, better aligns with human spatial cognition pro-
cesses and demonstrates superior classification effectiveness.

Landforms are complex and diverse, with common types exhibiting significant
variety, which creates numerous difficulties for classification. To date, the ac-
curacy of object-based landform classification remains unsatisfactory. A key
reason is that landforms of interest to humans often exhibit multi-scale or scale-
spanning characteristics. On one hand, different types of landforms may have
overall scale differences. For example, in a large topographic relief area, valley
plains are generally narrower than other landforms but become objects of in-
terest due to their convenience for production and life. Existing studies have
addressed this through hierarchical recognition strategies, extracting different
landform types at various segmentation scales. However, selecting optimal seg-
mentation scales requires multiple trials and visual judgment, a process that is
cumbersome and highly subjective. On the other hand, different objects of the
same landform type also frequently exhibit scale differences. For instance, the
areas of loess tablelands (yuan) and loess ridges (liang) can vary enormously,
reaching several times or even greater differences. Any single-scale segmenta-
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tion and classification result is always suboptimal for such cases, a consideration
rarely addressed in existing research.

Therefore, developing landform classification methods that fully consider cross-
scale characteristics is essential. This paper proposes a multi-scale integrated
classification method for landforms that addresses scale-spanning characteristics
(hereinafter referred to as MSIC), aiming to avoid the subjectivity of selecting
optimal segmentation scales for different landform types in previous studies
while enabling extraction of the same landform type objects at different scales.
This approach expands research perspectives on landform classification methods,
achieves detailed landform classification, and provides technical support for com-
piling refined landform maps, with positive implications for rational land use,
effective soil erosion prevention, and natural disaster reduction.

2 Methodology
2.1 MSIC Procedure and Principles

The MSIC method comprises three components: multi-scale segmentation,
screening according to scale order, and multi-scale merging (Figure 1). Multi-
scale segmentation utilizes existing multi-scale segmentation algorithms to
obtain objects at various scales. Screening according to scale order is an
iterative confirmation process for classified objects based on multi-scale feature
extraction and supervised classification, guided by the principles of small-scale
(small-size) priority and probability maximization. Probability maximization is
a general principle in image classification, while small-scale priority ensures that
small-scale objects with spatial containment relationships can be excluded when
extracting and classifying large-scale objects. Multi-scale merging combines
the landforms screened at each scale to produce the final classification result.

The specific procedure is described as follows:

Step 1: Multi-scale segmentation. Determine a series of scales manually
and use existing multi-scale segmentation algorithms to obtain multi-scale ob-
jects.

Step 2: Feature extraction. Extract object unit features scale by scale, in-
cluding terrain attributes, texture features, and other potential terrain features
that may improve classification effectiveness.

Step 3: Supervised classification. Select training samples through field
surveys or high-resolution remote sensing imagery, perform supervised classifi-
cation to obtain multi-scale pre-classification information.

Step 4: Screening of classified objects at the minimum scale. Using
the principles of small-scale priority and probability maximization, screen and
confirm classified objects at the minimum scale.

Step 5: Multi-scale object updating. Remove the current minimum scale
from the multi-scale objects and clip the confirmed classified objects from all
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other scale objects.

Step 6: Iteration. Starting from the next scale above the current minimum
scale, repeat Steps 2 through 5 until all scales have been processed.

Step 7: Multi-scale merging. Combine the confirmed objects screened at
each scale to obtain a complete landform type map.

2.2 Accuracy Assessment

Classification accuracy assessment examines the degree of correspondence be-
tween classification results and real ground features. It is an essential compo-
nent of image classification for information extraction or land use/land cover
classification and is indispensable for landform recognition. Selected evaluation
metrics include overall accuracy (OA), producer’s accuracy (PA), user’s accuracy
(UA), and Kappa coefficient.

Overall accuracy is the ratio of the sum of diagonal elements in the confusion
matrix to the total number of samples. This parameter reflects the overall
accuracy of all landform categories in the automated classification but does not
indicate the accuracy of each individual category. Producer’s accuracy, also
known as PA, represents the proportion of samples actually belonging to class
i that are correctly classified as class i, serving as a measure of the producer’
s classification accuracy. User’s accuracy reflects the correctness of extracted
samples for a particular class. The Kappa coefficient can accurately reflect
overall landform classification accuracy and consistency with validation data,
providing an objective evaluation of classification results.

Kappa = 𝑁 ∑𝑘
𝑖=1 𝑚𝑖𝑖 − ∑𝑘

𝑖=1(𝑚𝑖+ × 𝑚+𝑖)
𝑁2 − ∑𝑘

𝑖=1(𝑚𝑖+ × 𝑚+𝑖)

where 𝑖 and 𝑗 are sample category numbers; 𝑁 is the total number of samples;
𝑚 is the number of corresponding categories; and 𝑘 is the number of landform
categories.

3 Study Area and Data
3.1 Study Area and Data

The study area is located in the western Loess Plateau of China (106.10°–
106.76°E, 35.71°–36.27°N), with elevations ranging from 1,132 to 2,932 m. The
terrain is higher in the northwest and lower in the southeast, containing typical
loess landforms including tablelands (yuan), ridges (liang), mounds (mao), and
valley plains (Figure 3). The DEM data with 30 m spatial resolution was down-
loaded from the Geospatial Data Cloud (http://www.gscloud.cn/). Traditional
landform classification primarily uses typical terrain factors as classification fea-
tures, while some studies have also considered terrain texture features. Recently,
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scholars have proposed the concept of landform elements and their extraction
methods, suggesting that spatial structure information of landform elements is
valuable for classification. Therefore, this study employs three categories of fea-
tures for landform classification: terrain factors, terrain texture, and landform
element structure information.

3.2 Multi-Scale Segmentation and Sample Collection

The eCognition Developer 9.0.3 multi-scale segmentation algorithm was used to
segment the DEM. Scale sizes were determined based on landform dimensions,
with all other parameters set to default values. After repeated experiments, the
segmentation scale series was determined to be {10, 20, 40, 80, 160, 320}. The
“Geomorphic Types of Loess Plateau in China”edited by Zhang Zonghu was man-
ually digitized as a reference for the study area portion, including 12 landform
types: bedrock mountains, flat-beam valleys, gentle-beam valleys, wide-beam
valleys, narrow-beam valleys, low-hill gentle valleys, gentle-mao valleys, river
terraces, residual-yuan valleys, wide-yuan valleys, basins, and yuan. Among
these, 60% of the polygons were used as training samples and 40% as validation
samples.

3.3 Feature Extraction

Terrain factors: Various terrain factors exist with certain correlations and
information redundancy. The Shannon entropy method was used to identify low-
correlation terrain factors, which were then quantitatively screened, ultimately
selecting elevation, slope, hillshade, surface curvature, slope rate, terrain relief,
and elevation variation coefficient as classification factors.

Terrain texture: The gray-level co-occurrence matrix (GLCM) proposed by
Haralick has been widely applied in image texture analysis. Considering work-
load and correlation between features, and based on previous experience, 11
texture features were selected: elevation variation, slope mean, slope entropy,
hillshade mean, hillshade variance, hillshade entropy, hillshade correlation, hill-
shade angular second moment, hillshade dissimilarity, hillshade homogeneity,
and hillshade contrast.

Landform element structure information: First, the geomorphons method
proposed by Jasiewicz was used to extract element layers. Then, the GeoPAT
histogram tool was used to extract spatial structure information for each unit
at each scale. Finally, principal component analysis was applied to obtain the
first three principal components.

4 Results
4.1 MSIC Classification Accuracy

The MSIC classification results show that the southeastern part of the study
area is primarily large-scale bedrock mountains, while the northwestern part

chinarxiv.org/items/chinaxiv-202203.00106 Machine Translation

https://chinarxiv.org/items/chinaxiv-202203.00106


mainly contains continuous residual-yuan valleys and gentle-beam valleys. The
central region exhibits diverse landform types with interspersed large and small
entities. Table 1 presents the producer’s accuracy and user’s accuracy for var-
ious landforms. Bedrock mountains achieved a producer’s accuracy of 79.70%
and user’s accuracy of 51.60%, indicating low commission errors but high omis-
sion errors for yuan classification. Residual-yuan valleys achieved a producer’s
accuracy of 89.47% and user’s accuracy of 45.14%, showing distinct morpholog-
ical features that are not easily omitted, while yuan tends to be omitted. The
overall accuracy is 75.16% and the Kappa coefficient is 0.71, indicating high
classification accuracy and practical applicability.

4.2 Comparison Between MSIC and Single-Scale Classification Accu-
racy

Figure 5 shows classification results at single scales of 10, 40, 160, and 320.
Compared with MSIC results (Figure 4), small-scale results show high similar-
ity but excessive fragmentation with obvious over-segmentation. Large-scale
results contain larger patches where smaller landforms are submerged, showing
prominent under-segmentation. For example, the landform in window A should
be bedrock mountains, but at scale 10 it contains narrow-beam valleys and
basins, while at scale 160 it shows fewer mixed classifications. The landform in
window B should be gentle-mao valleys, correctly classified at small scales but
misclassified at large scales.

Table 2 compares the overall accuracy and Kappa coefficient between MSIC
and single-scale classifications. Single-scale classification overall accuracies are
48.66%, 32.19%, 48.91%, 47.84%, 42.30%, and 24.98%, with Kappa coefficients
of 0.38, 0.20, 0.38, 0.37, 0.31, and 0.13, respectively. The scale 40 classifica-
tion achieves the highest overall accuracy and Kappa coefficient among single
scales at 48.91% and 0.38, respectively. MSIC’s overall accuracy of 75.16% and
Kappa coefficient of 0.71 are significantly higher than any single-scale method,
exceeding the best single-scale results by 26.25% and 0.33, respectively.

To further demonstrate MSIC’s advantages over single-scale methods, landforms
were divided into three levels based on patch size: “large landforms,”“medium
landforms,”and“small landforms,”denoted as L, M, and S. Validation data were
used to assess accuracy for merged landforms (Table 3). MSIC achieved high
classification accuracy across all size levels. In contrast, single-scale methods
showed low accuracy at small scales (10, 20) and large scales (160, 320), with
only moderate accuracy at intermediate scales (40, 80).

5 Discussion
Xiong et al. proposed a drainage basin-based landform classification method
requiring threshold determination for critical watershed size. If the threshold
is too large, small watersheds are over-segmented, potentially containing mul-
tiple landform types within a single watershed. If watersheds are too small,
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insufficient data resolution may cause landform type errors. Wang et al. used
hierarchical classification for landform mapping, but similarly relied heavily on
watershed threshold selection requiring multiple trials and subjective manual
screening. Although MSIC also involves multi-scale segmentation, its scale se-
lection is less demanding than traditional methods, allowing manual specifica-
tion of a scale series. Naturally, more scales yield higher classification accuracy
but require greater computational effort.

MSIC has broad application potential in other remote sensing image classifica-
tions. Broadly speaking, landform classification belongs to the category of re-
mote sensing image classification. In remote sensing classification, object-based
methods primarily focus on uniform scales for the same landform type. How-
ever, the same landform type also commonly exhibits cross-scale phenomena
(especially in high-resolution remote sensing imagery). Therefore, single-scale
methods may not meet practical needs. MSIC can avoid the need to select
optimal scales for different landforms and can handle cross-scale situations for
the same landform type, making it applicable to object-based remote sensing
classification to address this issue.

Future research should: (1) consider both morphological and genetic aspects
of landforms, as landforms are complex combinations of form and origin; (2)
optimize scale selection to achieve adaptive scale algorithms while identifying
feature combinations that better reflect landform characteristics; (3) incorporate
machine learning algorithms to improve classification efficiency, as conventional
supervised classification is relatively inefficient.

6 Conclusion
Existing automatic landform classification methods have not adequately ad-
dressed the challenge of cross-scale classification of landform objects, constrain-
ing classification accuracy. This paper proposes a multi-scale integrated clas-
sification method that considers scale-spanning characteristics. Experiments
on the Loess Plateau demonstrate that MSIC achieves an overall accuracy of
75.16% and a Kappa coefficient of 0.71, successfully identifying both small and
large landforms and enabling detailed landform classification.

This study attempts to classify landforms from a morphological perspective,
using landform size as a scale division unit. Although promising results were
achieved, the research only considered morphological characteristics. As land-
forms are complex combinations of form and origin, genetic aspects were not
addressed. Future research should: (1) consider both morphological character-
istics and genetic origins of landforms; (2) note that experimental parameters
in this study are regional and require adjustment when applied to other study
areas.
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