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Abstract

As an important component of the currently most authoritative dataset for
medium-range ensemble forecasting, the applicability of TIGGE precipitation
products in the arid and semi-arid regions of China requires further investigation.
Based on observed precipitation data from 2015-2017 in the arid and semi-arid
regions of China, and employing metrics such as mean absolute deviation, root
mean square error, and TS score, this study comprehensively evaluated the fore-
cast performance of four models from the TIGGE data center—ECMWF, JMA,
KMA, and UKMO—in the study region from multiple perspectives including
precipitation amount forecast, categorical precipitation forecast, precipitation
detection capability, and spatial forecast accuracy. The results indicate: (1) All
four models demonstrate relatively good performance for light rain forecasts;
when forecasting different precipitation categories, JMA exhibits the best per-
formance for light rain, while no significant differences are observed among the
four models for other precipitation categories; (2) For daily precipitation fore-
casting, KMA performs the worst, whereas ECMWF is the most accurate; (3)
Evaluation results of precipitation detection capability under different precipita-
tion thresholds reveal that ECMWF holds a comparative advantage, particularly
evident when using 25 mm - d-1 as the threshold; (4) Spatial forecast accuracy
verification results show that all models perform optimally within the range of
80°-100°E, 35°-45°N, primarily covering central Xinjiang and the tri-provincial
junction of Xinjiang, Gansu, and Qinghai; among the models, ECMWF demon-
strates more stable performance, while KMA performs poorly.
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Abstract

Short- and medium-term precipitation forecast products are crucial for improv-
ing the prediction period and accuracy of flood forecasts. With global climate
change, precipitation pattern prediction has become increasingly complex and
important. However, the applicability of TIGGE precipitation products—a key
component of the most authoritative dataset for short- and medium-term en-
semble forecasts—in China’ s arid and semi-arid regions remains underexplored.
Based on measured precipitation data from 2015-2017 in these regions, this
study comprehensively evaluated the forecast performance of four TIGGE mod-
els (ECMWF, JMA, KMA, and UKMO) using multiple indicators including
mean absolute deviation, root mean square error, and TS score. The evalua-
tion examined four aspects: precipitation amount forecasting, precipitation level
classification, precipitation detection capability, and spatial forecast accuracy.
Results demonstrate that all four models effectively forecast light rain, with the
JMA model showing the best performance for light rain at different precipita-
tion levels, while no significant differences were observed among models for other
precipitation levels. The KMA model performed worst for daily precipitation
forecasting, whereas the ECMWEF model achieved the highest accuracy. Evalu-
ation of precipitation detection capabilities under different thresholds revealed
that ECMWF holds a distinct advantage, particularly when the threshold is
25 mm - d~!. Spatial accuracy assessment indicated that all models performed
optimally within the 80°-100°E and 35°-45°N range, primarily covering cen-
tral Xinjiang and the tri-provincial junction of Xinjiang, Gansu, and Qinghai.
Among all models, ECMWF demonstrated the most robust performance, while
KMA performed the poorest.
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1. Study Area and Data
1.1 Study Area

According to China’ s annual precipitation distribution map, regions with
annual precipitation below 400 mm are classified as arid and semi-arid areas
—zones where precipitation is less than evaporation. The study area spans
27.27°-49.85°N and 73.43°-121.91°E, covering approximately 4.56$x107{6}$
km?.  Most of the region experiences a temperate continental climate
characterized by scarce precipitation, low vegetation coverage, and exten-
sive deserts, bare land, and saline-alkali soils. The boundary delineation
follows the eco-geographical regionalization data from the Resource and
Environment Science and Data Center of the Chinese Academy of Sciences
(https://www.resdc.cn/data.aspx?’DATAID=125).

1.2 Data Sources

1.2.1 Forecast Data This study utilized TIGGE forecast data from four
operational centers: ECMWEF (European Centre for Medium-Range Weather
Forecasts), JMA (Japan Meteorological Agency), KMA (Korea Meteorological
Administration), and UKMO (UK Met Office). Due to varying spatiotempo-
ral resolutions across institutions, we standardized the forecast origin time to
00:00 UTC (corresponding to 08:00 Beijing time, UTC+8:00), set the spatial
resolution to 0.5°$x$0.5°, and unified the forecast duration to 168 hours. Con-
sidering data completeness, we selected the period 2015-2017, which exhibited
relatively complete forecast data. The forecast data can be freely obtained from
https://apps.ecmwf.int /datasets/data/tigge/ in GRIB2 format. Using Python
libraries xarray and cfgrib, we extracted the control forecast products from each
model. Table 1 summarizes the basic information of the selected models.

1.2.2 Observed Data Observed precipitation data were obtained from the
China Ground Precipitation Daily Gridded Dataset (version 2.0) established
by the National Meteorological Information Center. This dataset is generated
through spatial interpolation using local thin-plate smoothing splines, based
on daily precipitation records from over 2,400 national meteorological stations
and GTOPO30 elevation data (30 m$x30m)resampledto0.5°x$0.5° resolution.
Quality assessment reveals that interpolation absolute errors are generally
higher in southeastern China, with summer errors significantly larger than
other seasons. The dataset tends to weaken precipitation intensity during heavy
and moderate rain events while remaining closer to observed values during
light rain events. It accurately captures precipitation spatial characteristics
near major topographical features such as the Tibetan Plateau, Tianshan
Mountains, and Tarim Basin. Consequently, this dataset serves as a reliable
representation of observed precipitation in China’ s arid and semi-arid regions.
Table 1 presents the basic information of the observed data used in this study.
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1.2.3 Data Processing To ensure comparability between forecast and ob-
served data, we standardized their spatiotemporal scales through the following
procedures: (1) Spatial scale unification: We applied bilinear interpolation to
align forecast and observed data grids with 0.25° center differences, then ex-
tracted the study area using a mask. (2) Temporal scale unification: While
forecast data represent 24-hour cumulative precipitation at 24-hour intervals,
observed data are daily precipitation values. Given occasional missing forecast
data, we first extracted daily precipitation data at 24-hour forecast steps, then
removed corresponding observed data days for each model’ s missing periods,
ensuring temporal consistency between both datasets.

For precipitation amount evaluation, we employed the grid-averaging method to
convert multi-model precipitation and observed data into area-averaged precip-
itation for the entire study region, enabling assessment of overall daily precipi-
tation forecast effectiveness. Subsequently, we classified observed precipitation
data according to the classification standards in Table 2, extracted forecast data
at corresponding grid positions (same date and coordinates) using index match-
ing, and generated separate datasets for different precipitation levels to evaluate
classification forecast capability. Finally, we calculated regional forecast errors
to reveal geographic variations among models.

Regarding precipitation detection capability, we selected threshold values of 0.1
mm-d!, 10 mm-d~', 25 mm-d~!, and 50 mm - d~! based on the contingency
table to compute statistical metrics, revealing detection capabilities across dif-
ferent models and lead times. This study exclusively examined precipitation
events, excluding non-precipitation days from consideration.

2. Methods
2.1 Statistical Metrics

We employed commonly used indicators to evaluate precipitation forecast per-
formance:

e Mean Absolute Deviation (MIAD): Measures forecast deviation direc-
tion and magnitude

¢ Root Mean Square Error (RMSE): Reflects deviation between fore-
cast and observed sequences without considering direction, with greater
sensitivity to larger errors

o Underestimation Rate (S1) and Underestimation Error (XI): Re-
flect average degree of forecast values being lower than observed values

o Overestimation Rate (Sg) and Overestimation Error (Xg): Reflect
average degree of forecast values being higher than observed values

All metrics approach zero for perfect forecasts, with values closer to zero indi-
cating better model performance.
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where F, and O, represent forecast and observed precipitation on day ¢, respec-
tively; IV is the total number of forecast days; X, is the overestimation error on
day t; X}, is the underestimation error on day t; N, is the total number of days
with overestimation; and NN, is the total number of days with underestimation.

2.2 Classification Metrics

Beyond continuous variable evaluation, assessing precipitation event detection
capability is essential. Using the contingency table approach proposed by Wilks,
we calculated classification metrics for different precipitation thresholds to com-
prehensively evaluate detection capabilities of the four TIGGE models.

The contingency table structure is:

Forecast Observed Yes No

Yes H F
No M

where: - H (Hits): Events detected by both observed and forecast data - F (False
alarms): Events detected by forecast but not observed - M (Misses): Events
detected by observed but not forecast data

We computed three key indicators: - TS Score (Threat Score): Considers
both successful detection and false alarms, reflecting actual detection capability
- POD (Probability of Detection): Proportion of observed precipitation
events successfully forecasted - FAR (False Alarm Ratio): Proportion of
forecast precipitation events that did not occur

All three metrics range from 0 to 1, where higher TS and POD values and lower
FAR values indicate better forecast performance. The formulas are:

H POD:7H , FARziF

TS= ———
S H+F+M H+M H+F
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3. Results and Analysis
3.1 Daily Precipitation Forecast Evaluation

To assess overall applicability of TIGGE models across the study area, we pro-
cessed multi-model precipitation and observed data into area-averaged precipi-
tation using the grid-averaging method. Five evaluation metrics (MAD, RMSE,
S, X1, Sg, and Xg) were applied to evaluate 1-7 day lead time forecasts.

Results show that all four models exhibit negative bias, indicating systematic
underestimation of precipitation amounts. The underestimation rate (Sl) ranges
from 0.65 to 0.85, significantly higher than the overestimation rate (Sg) which
ranges from 0.15 to 0.35. Although Sl decreases with longer lead times while
Sg increases, the predominant underestimation remains the primary source of
precipitation forecast bias.

Forecast errors increase mainly during the first 1-3 days, subsequently stabi-
lizing without significant changes. The ECMWF model demonstrates the best
performance, particularly for 1-3 day lead times, while KMA performs worst.
Overall, ECMWF shows superior daily precipitation forecasting capability with
better forecast timeliness.

3.2 Precipitation Classification Forecast Evaluation

Beyond overall precipitation assessment, evaluating forecasts by precipitation
level is crucial. We classified observed precipitation data according to Table 2,
extracted corresponding forecast data at matching grid positions, and computed
five evaluation metrics (MAD, RMSE, S1, X1, Sg, Xg) for different intensity levels
across 1-7 day lead times.

For light rain, MAD ranges from 0.4 to 4.3 mm and RMSE from 0.4 to 0.9
mm, indicating high forecast capability that gradually declines with increasing
precipitation levels. For heavy rain, MAD increases to 3.3-4.3 mm and RMSE
to 0.7-0.6 mm. A notable case occurred on July 19, 2016, when a heavy rain
event in the eastern study area (109°-111°E, 38°-39.5°N) with maximum single-
grid daily precipitation of 44-60 mm was detected only by ECMWF, while other
models missed it entirely and showed significant overestimation.

Across all precipitation levels, overestimation rates exceed underestimation
rates, with overestimation errors (except for light rain) greater than underesti-
mation errors. This results in slight negative bias for light rain but substantial
positive bias for other levels, indicating that forecast overestimation constitutes
the main error source beyond light rain.

Inter-model comparison reveals minimal differences during light rain events,
where JMA performs best. For moderate, heavy, and torrential rain, ECMWF
demonstrates clear superiority, particularly during the first 1-3 days when error
reduction is most significant. The ranking of model performance from best to
worst is: ECMWEF, UKMO, JMA, and KMA.
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3.3 Precipitation Detection Capability Evaluation

Classification metrics were calculated for thresholds of 0.1 mm - d~* (light rain),
10 mm + d~! (moderate rain), 25 mm +d~! (heavy rain), and 50 mm - d~! (tor-
rential rain) across 1-7 day lead times using TS, POD, and FAR indicators.

For the 0.1 mm-d ! threshold, TS scores range from 0.32 to 0.48, POD from 0.5
to 0.8, and FAR from 0.35 to 0.55, indicating relatively good detection capability
for light rain that deteriorates with increasing thresholds. POD decreases while
FAR increases consistently across all models, demonstrating reduced detection
capability at higher precipitation thresholds. The most significant degradation
occurs during the first 1-3 days.

Model comparison shows greater differentiation for heavy rain, minimal differ-
ences for moderate rain, and poor performance for torrential rain (making com-
parisons meaningless). At the 0.1 mm - d~! threshold, although KMA shows
higher POD, it also exhibits the highest FAR, suggesting a tendency toward
over-forecasting light rain. At the 25 mm-+d~! threshold, ECMWF demon-
strates clear advantages with more robust performance.

3.4 Spatial Forecast Accuracy Evaluation

To analyze spatial patterns, we calculated RMSE at each grid point by compar-
ing TIGGE model precipitation data with corresponding observed data. Grid
results were interpolated to contour lines at 2 mm - d~! resolution, with areas
exceeding 6 mm - d~! uniformly colored to visualize spatial accuracy patterns
against a provincial administrative base map.

Spatial distribution reveals that most regions show RMSE below 3 mm - d !,
with over half the area below 1 mm - d !, indicating generally good forecast ac-
curacy across the study area. However, distinct spatial patterns emerge: RMSE
increases from west to east, peaking in the mid-eastern region before decreas-
ing. High-error areas coincide with high-precipitation zones, suggesting that
abundant precipitation reduces forecast accuracy—more frequent precipitation
corresponds to lower forecast precision.

All models perform best in the 80°-100°E and 35°-45°N range, primarily cov-
ering central Xinjiang and the Xinjiang-Gansu-Qinghai tri-provincial junction.
Performance is poorest in the 100°-120°E and 35°-40°N range. ECMWF con-
sistently outperforms other models across different lead times, demonstrating
more stable performance, particularly at the 25 mm - d~! threshold.

4. Conclusions

This study evaluated TIGGE precipitation forecasts from ECMWF, JMA, KMA,
and UKMO models in China’ s arid and semi-arid regions using 2015-2017 daily
precipitation data. A comprehensive applicability assessment was conducted
from four perspectives: precipitation amount forecasting, precipitation level

chinarxiv.org/items/chinaxiv-202203.00099 Machine Translation


https://chinarxiv.org/items/chinaxiv-202203.00099

ChinaRxiv [$X]

classification, precipitation detection capability, and spatial forecast accuracy.
Key findings include:

1. Precipitation Amount Forecasting: All four models demonstrate
strong forecasting capability for area-averaged daily precipitation across
1-7 day lead times, with good timeliness. ECMWF performs optimally,
while KMA performs poorest. The models show slight underestimation
for light rain but overestimation for other precipitation levels, with daily
precipitation forecasts generally biased low.

2. Precipitation Classification Forecasting: The models exhibit supe-
rior performance for light rain, with MAD of 4.30 mm and RMSE of 0.44
mm, but poorer performance for torrential rain and above, with MAD
reaching 44.00 mm. ECMWF shows the best performance, particularly
for precipitation below 10 mm, while KMA performs worst. Inter-model
differences are minimal for light rain but become pronounced for moderate
to heavy precipitation.

3. Precipitation Detection Capability: All models demonstrate precipi-
tation detection ability across different thresholds. ECMWF holds a dis-
tinct advantage, particularly at the 25 mm - d~! threshold. Spatial accu-
racy tests reveal optimal performance in the 80°-100°E and 35°-45°N range
(central Xinjiang and tri-provincial junction), with poorest performance
in the 100°-120°E and 35°-40°N range.

4. Common Characteristics: All models show consistent patterns: fore-
cast accuracy degrades with increasing lead time, with the most significant
degradation during days 1-2; accuracy metrics deteriorate with increasing
precipitation levels; and spatial patterns show decreasing accuracy from
west to east, correlating with precipitation frequency.

These findings provide a foundation for precipitation correction, model inte-
gration, and improved medium-range forecasting in the study area. Specific
recommendations include: applying different correction coefficients below and
above certain thresholds to address systematic biases; assigning higher weights
to ECMWF in multi-model ensembles; and conducting seasonal evaluations for
applications beyond summer.
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