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Abstract

The 0.618 method is the most widely used approach in one-dimensional line
search for unimodal functions. While it exhibits good convergence properties,
its convergence rate is excessively slow. Therefore, based on the function values
at the endpoints of the search interval and at any point within the interval, this
paper presents a universal acceleration strategy for line search, wherein each
iteration can substantially reduce the interval of uncertainty for the function
values. Numerical experimental results demonstrate that the convergence rate is
improved compared to the 0.618 method, particularly when the function values
at the endpoints of the initial interval differ substantially, in which case the
proposed improved algorithm can significantly reduce the interval size.
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Abstract

The 0.618 method is the most widely used approach for one-dimensional uni-
modal functions in line search. While it exhibits good convergence properties,
its convergence rate is too slow. This paper proposes a universal acceleration
strategy for line search based on function values at the interval endpoints and
an arbitrary interior point. Each iteration substantially reduces the uncertainty
interval containing the minimum. Numerical experiments demonstrate that the
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proposed algorithm achieves faster convergence than the 0.618 method, partic-
ularly when the function values at the initial interval endpoints differ signifi-
cantly.

Keywords: One-dimensional search; Interval interpolation; 0.618 method; Ac-
celeration strategy

1. Introduction

In iterative optimization algorithms, one-dimensional search (or line search) is
an indispensable component of many nonlinear programming methods. This
problem can be reduced to the minimization of a univariate function, with the
mathematical model being: minimize f(z). Line search is classified into ex-
act and inexact methods [?]-[?]. Exact line search includes both analytical and
direct methods. Analytical methods utilize derivative information, such as inter-
polation methods, Newton’ s method, and parabolic methods. However, when
derivatives are unavailable or difficult to compute, direct methods that do not
require derivatives become necessary. The fundamental idea of direct methods
is to first determine a search interval containing the optimal solution, then ap-
ply interpolation or partitioning techniques to narrow this interval for precise
solution. Such methods include the golden section method, Fibonacci method,
and quadratic interpolation. In one-dimensional search, functions are generally
required to be unimodal, so this paper considers only unimodal functions.

Since most practical functions have unavailable or extremely difficult-to-
compute derivatives, direct methods find wide application. From the
aforementioned philosophy of direct methods, two key factors determine their
performance: first, the selection of the initial interval, and second, the reduction
of the subinterval containing the minimum point [?].

The 0.618 method is the most widely used approach in one-dimensional direct
search. Its advantages include no requirement for function continuity, compu-
tation of only one new test point per iteration (with the other being reused),
and good linear convergence properties. However, its drawback is slow conver-
gence. This paper proposes an improved optimization method based on the
0.618 method and demonstrates through numerical comparisons that the new
algorithm converges faster with fewer iterations.

2. The 0.618 Method

The 0.618 method, also known as the golden section method, operates on the
principle of progressively narrowing the search interval (uncertainty interval)
containing the minimum point by comparing function values at test points until
some criterion is satisfied, yielding an approximation of the minimum [?].

The rule for selecting test points in the 0.618 method is:
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A=a+0.382(0b—a), pw=a+0.618b—a)

The computational procedure is as follows:

Step 0: Given initial interval [a,b] and precision ¢ > 0. Calculate function
values f(a) and f(b). Set k = 0.

Step 1: Compute test points A, and g, using the formulas above. Calculate
function values f(\;) and f(uy).

Step 2: If f(A,) < f(uy), set b = p,; otherwise, set a = A

Step 3: If |b —a| < ¢, stop and obtain the approximate minimum point; other-
wise, set k = k + 1 and return to Step 1.

3. Improved Algorithm Based on Interval Interpolation

References [?][?] propose different improved algorithms based on interval re-
duction, utilizing first-order and second-order derivatives at one endpoint to
further shrink the interval. However, these methods become inapplicable when
derivatives are unavailable or difficult to compute. Therefore, this paper aims
to develop a one-dimensional line search acceleration algorithm using function
values at both interval endpoints and an arbitrary interior point to improve the
0.618 method.

Let f(x) be a one-dimensional continuous unimodal function whose derivatives
are unavailable or difficult to obtain. Let [ay,b,] be the current search interval
containing the minimum point z*. The key insight is that if we can identify a
point & in the interval where f(£) > max{f(a;), f(bs)}, then the interval [a;, ¢]
(or [¢,b;]) cannot contain z* and can be eliminated before further partitioning,
thereby enhancing algorithm efficiency. The challenge lies in finding such a point

£.

For simple functions, an exact solution for £ may be obtainable, but this ap-
proach has limited applicability. An alternative is to use interpolation, which
relies solely on function values without requiring derivatives. We propose us-
ing quadratic interpolation to obtain an approximate value ( that can replace £.
The specific approach constructs a quadratic approximation ¢(z) using function
values at the interval endpoints f(ay), f(b,) and at the midpoint f(c;) (where
¢, is typically chosen as the interval midpoint), employing three-point quadratic
interpolation [?]. The point ¢ satisfying ¢(¢{) = max{¢(ay), ¢(b;)} is then used
for interval reduction.

The algorithmic steps of the improved method are:

Step 0: Given initial search interval [ag, by], precision € > 0, and an interior
point ¢, € (ag,by) (typically the midpoint). Calculate function values f(ag),
f(by), and f(cy). Set k= 0.
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Step 1: If b, —a; < €, stop and return the approximate minimum point
x* ~ (ay, + b;,)/2. Otherwise, proceed to Step 2.

Step 2: If f(ay) > f(by), compute ¢, via quadratic interpolation using points

(ak7 f(ak))v (bk7 f(bk))v and (Ckv f(ck)) Eliminate interval [bka Ck]a set A1 = A,
b1 = ¢, and proceed to Step 4. Otherwise, proceed to Step 3.

Step 3: When f(a;) < f(b,), compute ¢, using the same interpolation ap-
proach. Eliminate interval [(;,a.], set a; ., = (j, by = by, and proceed to
Step 4.

Step 4: Compute new test points A, ; and p,.,; using the standard 0.618
formulas for the updated interval [a;, 1, b, ]. Calculate function values f(\, ;)
and f(p,1). Set k =k + 1 and return to Step 1.

4. Numerical Experiments

To validate the improved algorithm, we selected one simple and two more com-
plex unimodal functions [?] for comparison with the 0.618 method. The algo-
rithms were applied to these test functions on specified intervals, with perfor-
mance measured by iteration count and solution accuracy at precision levels of
1072 and 1074.

Example 1: f(z) = 2%, with minimum point at z* = 0. Initial interval:
[—1,100].

Example 2: f(r) = x? — sin(¢), with minimum point at z* = —0.144275.
Initial interval: [—1,

].
Example 3: f(r) = (z —2)* + (z — 2)2, with minimum point at z* = 2.35424.
Initial interval: [1,4].
The comparison results are presented in Tables 1-3.
Table 1. Comparison of results for Function 1 | Method | Initial Interval
| Tterations | Final Interval | Interval Reduction Rate | |—-|——-——|—|

| || 0.618 Method | [-1, 100] | 23 | [-0.0039, 0.0024] | 1.15431
x 1072 | | Improved Method | [-1, 100] | 8 | [-0.0012, 0.0008] | 2.11656 x 10~3 |

Table 2. Comparison of results for Function 2 | Method | Initial Interval

| Iterations | Final Interval | Interval Reduction Rate | |—-|———|—]
| | | 0.618 Method | [-1, 4] | 18 | [-0.1446, -0.1439] | 7.23312

x 1073 | | Improved Method | [-1, 4] | 6 | [-0.1443, -0.1442] | 1.15431 x 1073 |

Table 3. Comparison of results for Function 3 | Method | Initial Interval
| Tterations | Final Interval | Interval Reduction Rate | |—|———|—|

| | | 0.618 Method | [1, 4] | 16 | [2.3539, 2.3546] | 6.02040 x
1073 | | Improved Method | [1, 4] | 5 | [2.3542, 2.3543] | 9.00901 x 10~* |

The experimental results show that the improved algorithm requires signifi-
cantly fewer iterations than the 0.618 method while achieving better solution
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accuracy. The generated sequence converges to the optimal solution within the
required precision in finite steps, demonstrating both stable convergence and
rapid convergence speed across various scenarios.

Further analysis reveals that while the 0.618 method computes only one new
function value per iteration, the improved method computes two. However, the
reduction in iteration count (by more than half) still yields overall improvement.
Table 4 compares the interval reduction rates for Example 1 across different
initial intervals.

Table 4. Comparison of algorithms for different intervals | Initial Interval |
0.618 Method Iterations | Improved Method Iterations | Iteration Reduction |
Interval Reduction Rate Improvement | | | | |
| || [-1,500] | 27| 9| 1/3 | 28% | | [-1, 100] | 23 | 8
[1/3128% | |[-1,10] |18 |6|1/3|30% || [-1,1]]|15]6|2/5]|6% || [-1,0.1]
[12|4|1/3|25% || [-1,0.01] | 10 | 3| 1/4 | 36% |

As shown in Table 4, when the initial interval is [—1,500], the iteration count
is one-third that of the 0.618 method with a 28% improvement in interval re-
duction rate. For [—1,0.01], iterations are reduced to one-quarter with a 36%
improvement. Notably, when the initial interval endpoints have function values
differing by approximately 100 times or more, the improved algorithm rapidly
reduces the interval and converges quickly to the minimum.

As interval length decreases, the 0.618 method’ s iteration count changes min-
imally or remains nearly constant. In contrast, the improved algorithm avoids
stagnation and occasionally achieves even greater iteration reductions, demon-
strating superior performance.

5. Conclusion

Line search algorithms are fundamental in single-factor experimental design, and
their convergence speed directly impacts overall algorithm efficiency. Leverag-
ing function information within the search interval to accelerate convergence is
a key research focus. This paper developed a universal acceleration strategy by
utilizing function values at interval endpoints to progressively narrow the search
space at each iteration. Numerical experiments confirm that the proposed algo-
rithm significantly accelerates existing line search methods, particularly when
function values at interval endpoints differ substantially.
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