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Abstract
This study employed the“Number-Letter Switching Task”to differentiate indi-
viduals with high versus low cognitive flexibility, constructed two probabilistic
category learning tasks with identical probabilistic pairing patterns but differ-
ent surface forms, and utilized ERP technology to investigate the characteristics
and mechanisms of cognitive flexibility’s effect on probabilistic category learn-
ing tasks. The results revealed that in both tasks, the rule acquisition level
of the high cognitive flexibility group was superior to that of the low cognitive
flexibility group, indicating that cognitive flexibility can facilitate probabilistic
category learning. Concurrently, ERP analysis results from different learning
stages demonstrated that the advantage of high cognitive flexibility individuals
in probabilistic category learning originates from the feedback processing stage.
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Abstract
This study employed a “number-letter switching task”to differentiate individ-
uals with high versus low cognitive flexibility, constructing two probabilistic
category learning tasks with identical probability matching patterns but differ-
ent task formats. Using ERP technology, we investigated the characteristics and
mechanisms through which cognitive flexibility influences probabilistic category
learning. Results revealed that in both tasks, the high cognitive flexibility group
demonstrated superior rule acquisition compared to the low flexibility group,
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indicating that cognitive flexibility facilitates probabilistic category learning.
Furthermore, ERP analyses across different learning stages showed that the ad-
vantage of high cognitive flexibility in probabilistic category learning originates
from feedback processing.

Keywords: cognitive flexibility, probability, rule learning, feedback-related
negativity (FRN), P300

Introduction
Cognitive flexibility represents a crucial component of executive function that de-
velops on the basis of inhibitory control and working memory (Diamond, 2013).
It refers to the capacity to adapt to environmental changes, including maintain-
ing activity in the face of irrelevant changes, with particular emphasis on shifting
from original perspectives and understanding objects from multiple viewpoints.
This construct overlaps substantially with task switching and creativity (Dia-
mond, 2013). Advanced cognitive processes such as problem-solving and creative
thinking depend critically on cognitive flexibility, and research has shown that
highly creative individuals can flexibly adjust their cognitive inhibition levels ac-
cording to task demands (Bai & Yao, 2018) and switch between thinking modes
effectively (He et al., 2020). Investigating the mechanisms through which cog-
nitive flexibility operates during problem-solving is essential for understanding
higher-order thinking processes and developing effective training methods.

Effective learning in higher-order thinking processes (such as reasoning tasks) de-
pends on the continuous integration of selection and reinforcement to establish
abstract stimulus-response rule associations from “stimulus-selection-feedback”
chains. Research has documented differential performance between high and
low flexibility individuals across various tasks involving advanced thinking. In
inductive reasoning tasks, high and low flexibility children show different learn-
ing potentials, with low flexibility children requiring more step-by-step prompts
to achieve similar learning outcomes as their high flexibility counterparts (Stad
et al., 2019). In ambiguous decision-making tasks such as the Iowa Gambling
Task (IGT), high flexibility individuals acquire more task-relevant explicit knowl-
edge and demonstrate advantages across decision-making stages including choice
evaluation, response selection, and feedback processing (Dong et al., 2016). Am-
biguous decision-making essentially represents probabilistic learning under un-
certainty. Researchers have also employed the“probabilistic category learning”
paradigm to study the acquisition of knowledge about non-deterministic rela-
tionships between cues and outcomes, which simultaneously involves elements
of probability, categorization, and rule learning (Craig et al., 2011; Schenk et al.,
2017; Li et al., 2012). Studies have found that in probabilistic category learn-
ing, adolescents with higher IQ levels generate more adaptive learning strategies
following positive feedback, accompanied by increased activation in the dorso-
lateral prefrontal cortex and dorsal anterior cingulate cortex (Bos et al., 2012).
Intelligence is intricately linked to executive functions including cognitive flexi-
bility (Alfonso & Lonigan, 2021; Allan et al., 2014). Based on these findings, we
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hypothesized that learners’cognitive flexibility influences probabilistic category
learning.

The role of cues in category learning has also attracted researchers’attention
(Newell et al., 2007; Li et al., 2012; Xu et al., 2011), with investigations of
cue characteristics providing evidence for the debate between explicit and im-
plicit systems in probabilistic category learning. High-predictability cues can
improve learner performance, a response pattern that is independent of stimu-
lus presentation time but constrained by the probabilistic matching relationship
between cues and targets (Girardi et al., 2013). The present study examined
how the presence versus absence of cues affects learning outcomes in proba-
bilistic category learning. Previous research using switching tasks found that
effective utilization of explicit cues reduces switch costs and facilitates prepara-
tion for specific response rules (Koch & Allport, 2006). Studies investigating
cognitive processing characteristics in special populations (such as individuals
with obsessive-compulsive tendencies) under different probabilistic cue condi-
tions revealed that high obsessive-compulsive tendency individuals tend to per-
severate on original processing modes, whereas low tendency individuals adjust
their processing strategies according to probabilistic changes (Miao et al., 2015).
Cognitive flexibility fundamentally reflects individuals’inhibitory control and
cognitive shifting abilities, enabling them to suppress dominant but ineffective
cues and reconfigure resources efficiently (Lange et al., 2015). This study fo-
cused on a normal population to investigate whether high cognitive flexibility
individuals can better utilize cues to facilitate learning in cued probabilistic
category learning.

Leveraging the high temporal resolution advantage of event-related potential
(ERP) technology to examine probabilistic category learning in stages facilitates
exploration of learning characteristics at different phases and expands research
depth. Zeithamova et al. (2007) proposed that rule-based category learning
involves at least two processes: category representation and category criterion
formation—namely, perceiving stimuli to form category representations, and pro-
cessing feedback to establish category criteria. Dong et al. (2016) extended this
two-stage model in their study of ambiguous decision-making by dividing learn-
ing into choice evaluation, response selection, and feedback processing stages
involving stimulus perception, risk selection, and feedback learning, discover-
ing advantages for high cognitive flexibility individuals across all three stages:
stronger memory for stimuli, formation of conceptual knowledge about the task,
and development of expectations for reward stimuli. Drawing on this research,
the present study employed ERP technology to examine characteristics of choice
evaluation and feedback processing stages in probabilistic category learning.

Common experimental tasks for measuring cognitive flexibility include the Wis-
consin Card Sorting Test (WCST) (Dong et al., 2016) and switching tasks (Deák
& Wiseheart, 2015; Erb et al., 2017). Research indicates that switching tasks
provide a purer measure of cognitive flexibility (Lange et al., 2018; Lange et
al., 2017). Moreover, compared to WCST tasks—which have numerous mea-
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surement indicators without consistent key indicators across studies (Feng &
Feng, 2019)—the measurement of “switch cost”in switching tasks is relatively
uniform across studies and easier to interpret and understand. Therefore, this
study used switch cost from a switching task as the basis for distinguishing
participants with different cognitive flexibility levels, specifically implementing
Rogers’(1995) “number-letter switching task.”Additionally, previous research
on cognitive flexibility has focused primarily on children and adolescents, likely
because cognitive flexibility in these groups is still developing and has greater
potential for intervention and improvement. In contrast, college students in
early adulthood have relatively stable cognitive flexibility and fluid intelligence
levels, making them more suitable for comparing learning characteristics across
different cognitive flexibility levels to reveal general features of how cognitive
flexibility influences learning, particularly in higher-order thinking processes.

In summary, this study aimed to address three questions: (1) Does cognitive
flexibility influence probabilistic category learning? (2) Is the effect of cogni-
tive flexibility on probabilistic category learning moderated by task cues? (3)
Which stage of probabilistic category learning is primarily affected by cognitive
flexibility? To answer the first two questions, we designed two probabilistic
learning tasks with identical probability configurations but different cue charac-
teristics. To address the third question, we employed high temporal resolution
ERP technology to examine the learning process in stages.

2.1 Participants
We recruited 310 college students through online and offline channels on campus
to complete the “number-letter switching task”for cognitive flexibility assess-
ment. Data from 13 participants were excluded due to consistently repeating
one response, misunderstanding instructions, or excessively short reaction times
(<100ms), and these individuals did not participate in subsequent experiments.
Among the remaining 297 participants (60 male; mean age = 18.7 ± 1.5 years),
none had previously completed tasks identical to those in this study. Based on
their performance on the number-letter switching task and willingness to partic-
ipate in the EEG experiment, 76 individuals were selected. All participants had
normal or corrected-to-normal vision, were right-handed, had no cognitive im-
pairments, and no history of psychiatric disorders. The study was approved by
the Soochow University Ethics Committee. All participants provided informed
consent before the experiment and received monetary compensation upon com-
pletion.

2.2.1 Number-Letter Switching Task
We employed the classic “number-letter switching task”paradigm. In each
trial, a mixed stimulus consisting of a letter (vowel: A/E/I/U or consonant:
G/K/M/R) and a number (odd: 3/5/7/9 or even: 2/4/6/8) was presented in
one quadrant of a 2$×$2 grid. Participants were instructed that when the
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stimulus appeared in the upper two quadrants, they should press the E or I
key to judge whether the letter was a vowel or consonant; when it appeared
in the lower two quadrants, they should press the E or I key to judge whether
the number was odd or even. Participants proceeded to the formal experiment
only after achieving at least 80% accuracy in practice. The formal experiment
consisted of 128 trials. Reaction time and accuracy were recorded, with switch
cost used to differentiate high and low flexibility individuals. Switch cost was
calculated as the difference between mean reaction times for correct responses
on switch trials and non-switch trials.

2.2.2 Raven’s Progressive Matrices
To measure participants’intelligence levels and control for potential interference
from intelligence factors, we administered a shortened version of Raven’s Pro-
gressive Matrices. The test consisted of 20 items, with 90 seconds allowed per
item. Each correct answer received 1 point, while incorrect answers or timeouts
received 0 points.

2.2.3 Uncued Probabilistic Category Learning Task—Pic-
ture Selection Task
In the picture selection task, white stimuli were presented on a black back-
ground. The experimental materials consisted of four types of stimuli, each
associated with a reward probability: 0, 1/3, 2/3, or 1. A Latin square design
was used to counterbalance the reward probabilities assigned to each stimulus
type across participants. The trial procedure is illustrated in Figure 1. Partici-
pants’task was to press the F/J key to select the stimulus on the left/right side
that was more likely to yield a reward. Triangular and hexagonal feedback indi-
cated reward or no reward, respectively (counterbalanced across participants).
The experiment included four probability pairing levels (0-1/3, 0-2/3, 1/3-2/3,
1-1/3), with the number of trials for each pairing shown in Table 1. The ex-
periment comprised 540 trials total, with a break after every 45 trials. Par-
ticipants were informed that greater numbers of reward feedback would result
in larger monetary compensation upon completion. No probability information
was disclosed beforehand; perception of stimulus probabilities and identification
of advantageous options required accumulation of feedback information. After
the experiment, participants estimated the likelihood of each of the four stimuli
yielding a reward when presented individually.

2.2.4 Cued Probabilistic Category Learning Task—Coin
Search Task
The coin search task was adapted from Bellebaum et al. (2008). Stimuli were
presented on a black background, with 12 colored squares on each side of the
fixation point. Participants were informed that one coin was hidden among the
12 squares on each side, and they should press the F/J key to judge which side
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(left/right) was more likely to yield a reward. After making a selection, trian-
gular and hexagonal feedback indicated reward or no reward (counterbalanced
across participants). Greater numbers of reward feedback resulted in larger
monetary compensation. The number of red squares on each side was 2, 4, or
6, corresponding to reward probabilities of 0, 1/3, 2/3, or 1. The probability
pairings and trial numbers for each condition were identical to the picture selec-
tion task (Table 1). With accumulated learning experience, participants would
discover the hidden cue: the critical role of the advantageous column. In the
example shown in Figure 2, the right column is advantageous, meaning pressing
F to select the left column yields a reward probability of 2/6 (1/3), while press-
ing J to select the right column yields a probability of 4/6 (2/3). The position
of the advantageous column (left or right) was counterbalanced across partic-
ipants. Unlike the picture selection task, this task included three blocks (180
trials each). In Block 2, after reward feedback, the coin’s specific location was
revealed: following reward feedback, the coin appeared in a random red square
in the selected column; following no-reward feedback, it appeared in a random
white square. The left/right configuration was counterbalanced across partic-
ipants. The trial procedure is illustrated in Figure 2. After the experiment,
participants reported the basis for their choices.

The two tasks contained identical probability matching relationships, temporal
intervals, and reward feedback patterns to enable cross-task comparisons. How-
ever, they differed in several aspects: First, stimulus forms differed to prevent
interference or facilitation between task rules in a within-subjects design. Sec-
ond, task procedures differed: the uncued picture selection task had no block
design, whereas the cued coin task included coin location information in Block
2 to reduce task difficulty. Previous research and pilot testing indicated that
without coin location cues, the number of participants who would ultimately
acquire the rule would be substantially lower. Third, the tasks differed in cued
versus uncued design: the picture selection task provided no cues, while the coin
search task’s cue was hidden in the comparison of colored square quantities,
requiring discovery through learning.

2.3 Procedure
Descriptive statistical analysis of switch costs from the number-letter task (M
± SD = 813.41 ± 389.24 ms) identified the 27th percentile cutoffs as 525.27 ms
and 1041.09 ms. Participants with switch costs below 525.27 ms were invited
as high cognitive flexibility participants, while those above 1041.09 ms were
invited as low flexibility participants. All volunteers first completed the Raven’
s Progressive Matrices, then performed the picture selection task and coin search
task in two separate sessions (order counterbalanced across participants) with
a two-week interval between EEG recordings.
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2.4 Apparatus
EEG data were recorded using Vision Recorder 2.0 (Brain Products, Munich,
Germany) with a 64-channel electrode cap. Reference electrodes were placed
on bilateral mastoids, with the average of bilateral mastoids used as reference.
Horizontal and vertical electrooculograms were recorded from the outer canthus
of the left eye and 1 cm above the left eye, respectively. Impedance at all
electrode sites was maintained below 5 kΩ, with a sampling rate of 1000 Hz.
Offline analysis was conducted using EEGLAB and ERPLAB, with a low-pass
filter of 40 Hz and trials containing artifacts exceeding $±$100 �V removed.

2.5 Data Collection and Analysis
For behavioral data analysis, to examine the dynamic learning process, we per-
formed a sliding window analysis for each participant with a window length
of 20 trials and step size of 1 trial. Additionally, following previous research
standards (Bellebaum & Daum, 2008), participants were considered to have ac-
quired the task rule (acquirers) if they achieved at least 16 correct responses out
of 20 consecutive trials and maintained this criterion for the remainder of the ex-
periment. This turning point was designated as the acquisition point, allowing
division of the experiment into pre-acquisition and post-acquisition phases.

For ERP analysis, to investigate learning characteristics and mechanisms across
different learning stages, we divided ERP analysis for both tasks into choice
evaluation and feedback processing stages. The choice evaluation stage was
time-locked to the onset of the fixation point and bilateral stimuli (the second
screen in the trial procedures shown in Figures 1 and 2), with a 200 ms pre-
stimulus baseline and analysis epoch of 1200 ms. Observation and analysis
revealed maximal ERP differences between bilateral stimuli at frontoparietal
and occipital regions. Following previous research (Dong et al., 2016), electrodes
P3, P4, Pz, PO3, PO4, and POz were selected for P200 analysis. Due to
task-specific differences, the P200 measurement window was 220-280 ms for
the picture task and 160-240 ms for the coin search task. Window selection
was based on observation of grand-averaged waveforms to center the window
on the P200 peak. The feedback processing stage was time-locked to feedback
onset, with a 200 ms pre-feedback baseline and ERP analysis epoch of 700
ms. Electrode selection followed previous FRN research, with the average of
electrodes Fz, FCz, and Cz in the 200-300 ms window serving as the FRN
measure, and the average of electrodes CPz, Pz, and POz in the 300-400 ms
window serving as the P300 measure.

3.1 Number-Letter Switching Task
Descriptive analysis of switch costs (X) from 297 participants revealed: Xmin
= 137.54 ms, Xmax = 2085.30 ms, Xmean = 813.41 ms, XSD = 389.24 ms.
The 27th percentile values were 525.27 ms and 1041.09 ms. Based on these
results, high cognitive flexibility participants in the EEG experiment had switch
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costs below 525.27 ms, while low flexibility participants had switch costs above
1041.09 ms.

3.2 Raven’s Progressive Matrices
Of the 76 participants who completed the EEG experiment, two (one from
each flexibility group) were excluded from subsequent analysis due to confusion
between reward feedback and response keys. All subsequent analyses were based
on the remaining 74 participants. Independent samples t-test on intelligence test
scores revealed no significant difference between the high flexibility group (n =
38) and low flexibility group (n = 36) [t(72) = -0.88, p > 0.05, Cohen’s d
= -0.21], indicating equivalent intelligence levels across groups and ruling out
intelligence as a confounding factor.

3.3.1 Behavioral Data Analysis: Picture Selection Task
(1) Acquisition Rate and Learning Curves

In the picture selection task, 32 of 38 high flexibility participants (84.21%) ac-
quired the rule, compared to 17 of 36 low flexibility participants (47.22%). The
acquisition rate was significantly higher in the high flexibility group [�2 = 11.31,
df = 1, p = 0.001].

Learning curves for the four groups (high flexibility-acquired, high flexibility-
unacquired, low flexibility-acquired, low flexibility-unacquired) are shown in
Figure 3.

(2) Accuracy

In this study, reward feedback was probabilistic. For example, in the 1/3-2/3
probability pairing, selecting either side could result in reward or no reward,
but selecting the right side (2/3 probability) was considered the correct option
as it yielded higher reward likelihood.

Among 74 participants (38 high flexibility, 36 low flexibility), six (5 high flexibil-
ity, 1 low flexibility) reached the acquisition criterion within approximately 30
trials, resulting in insufficient pre-acquisition trials for analysis. These partici-
pants were included only in post-acquisition analyses. Twenty-five participants
(6 high flexibility, 19 low flexibility) never reached the acquisition criterion. Re-
peated measures analysis included only participants with both pre- and post-
acquisition phases, yielding a final sample of 43 participants (27 high flexibility,
16 low flexibility).

After removing trials with no response, a 2 (learning phase: pre-acquisition,
post-acquisition) × 4 (probability pairing: 0-1/3, 0-2/3, 1/3-2/3, 1-1/3) × 2
(flexibility level: high, low) repeated measures ANOVA on response accuracy
revealed significant main effects of learning phase [F(1,41) = 146.91, p < 0.001,
�2 = 0.78], with higher accuracy post-acquisition; probability pairing [F(3,123)
= 14.87, p < 0.001, �2 = 0.27], with 0-1/3 pairings showing lower accuracy than
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other conditions (ps < 0.001) and 0-2/3 showing higher accuracy than 1/3-2/3
(p < 0.05); and flexibility level [F(1,41) = 6.08, p < 0.05, �2 = 0.13], with
higher accuracy in the high flexibility group. The learning phase × probability
pairing interaction was significant, with differences among the four probability
pairings significant in both pre- and post-acquisition phases (p < 0.001). No
other interactions were significant.

(3) Reaction Time

A 2 × 4 × 2 repeated measures ANOVA on reaction time revealed significant
main effects of learning phase [F(1,41) = 57.24, p < 0.001, �2 = 0.58], with
faster responses post-acquisition, and probability pairing [F(3,123) = 10.94, p
< 0.001, �2 = 0.23], with slower responses for 0-1/3 pairings compared to other
conditions (ps < 0.001). The 1/3-1 condition was marginally faster than 0-2/3
(p = 0.085) and 1/3-2/3 (p = 0.087).

(4) Reward Probability Estimation

After the experiment, participants estimated reward probabilities for the four
stimuli. Participants who did not provide numerical estimates (using verbal de-
scriptions or rankings instead) were excluded, leaving 63 participants for analy-
sis. Estimated values for the 0, 1/3, 2/3, and 1 probability conditions were 0.27,
0.41, 0.62, and 0.67, respectively. One-way ANOVA revealed a significant main
effect of probability [F(3,251) = 38.18, p < 0.001]. LSD post-hoc comparisons
showed significant differences between all pairs except 2/3 and 1.

3.3.2 Behavioral Data Analysis: Coin Search Task
(1) Acquisition Rate and Learning Curves

In the coin search task, 27 of 38 high flexibility participants (71.05%) acquired
the rule, compared to 12 of 36 low flexibility participants (33.33%). The acqui-
sition rate was significantly higher in the high flexibility group [�2 = 10.55, df
= 1, p = 0.001].

Learning curves for the four groups are shown in Figure 4. Both acquired groups
reached their acquisition turning point in the second block (trials 181-360), with
the high flexibility group at trial 244 and the low flexibility group at trial 257.

(2) Accuracy

Among 74 participants, three (all high flexibility) reached the acquisition crite-
rion with too few trials for pre-acquisition analysis and were included only in
post-acquisition analyses. Thirty-five participants (24 high flexibility, 12 low
flexibility) failed to acquire the rule. The repeated measures analysis included
36 participants (24 high flexibility, 12 low flexibility) with both pre- and post-
acquisition phases.

A 2 (learning phase) × 4 (probability pairing) × 2 (flexibility level) repeated
measures ANOVA on accuracy revealed significant main effects of learning phase
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[F(1,34) = 709.73, p < 0.001, �2 = 0.95], with higher accuracy post-acquisition,
and probability pairing [F(3,102) = 10.94, p < 0.001, �2 = 0.24]. All pairwise
comparisons were significant except between 0-2/3 and 1/3-1. The learning
phase × flexibility interaction was marginally significant [F(1,34) = 3.05, p =
0.090, �2 = 0.08], with simple effects analysis showing significant differences
between flexibility groups only post-acquisition [F(1,34) = 12.65, p < 0.05, �2
= 0.27]. No other main effects or interactions were significant.

(3) Reaction Time

A 2 × 4 × 2 repeated measures ANOVA on reaction time revealed significant
main effects of learning phase [F(1,34) = 84.56, p < 0.001, �2 = 0.71], with
faster responses post-acquisition; probability pairing [F(3,102) = 10.03, p <
0.001, �2 = 0.23], with all pairwise differences significant except between 0-2/3
and 1/3-2/3; and a marginal effect of flexibility [F(1,34) = 3.40, p = 0.074, �2
= 0.09], with faster responses in the high flexibility group. The learning phase
× probability interaction was significant [F(3,102) = 7.73, p < 0.001, �2 = 0.19],
with simple effects showing significant differences among probability pairings
only post-acquisition. The probability × flexibility interaction was significant
[F(3,102) = 3.20, p < 0.05, �2 = 0.09], with simple effects showing significant
differences among probability pairings only in the low flexibility group. The
three-way interaction was marginally significant [F(3,102) = 2.18, p = 0.100, �2
= 0.06].

ERP Results: Picture Selection Task
Among 43 participants with both pre- and post-acquisition phases, seven (4
high flexibility, 3 low flexibility) were excluded from ERP analysis due to exces-
sive artifacts, leaving 36 participants (23 high flexibility, 13 low flexibility) for
analysis.

(1) Choice Evaluation Stage

Separate 2 (learning phase) × 4 (probability pairing) × 2 (flexibility level) mixed
repeated measures ANOVAs on P200 amplitude (220-280 ms) at electrodes Pz,
P3, P4, POz, PO3, and PO4 revealed: At Pz, a marginally significant learning
phase × probability interaction [F(3,102) = 2.66, p = 0.052, �2 = 0.07], with a
marginal difference between pre- and post-acquisition only in the 1/3-1 condition
(p = 0.068). At P3, a marginally significant probability × flexibility interaction
[F(3,102) = 2.221, p = 0.090, �2 = 0.06], with simple effects showing a marginal
group difference only in the 0-1/3 condition (p = 0.088). At P4, a marginally
significant learning phase × probability interaction [F(3,102) = 2.608, p = 0.056,
�2 = 0.07], with significant pre-post differences only in the 1/3-1 condition (p <
0.05). At POz, a significant learning phase × probability interaction [F(3,102)
= 2.79, p < 0.05, �2 = 0.08], with significant pre-post differences in the 1/3-1
condition (p < 0.05). At PO3, a significant main effect of learning phase [F(1,34)
= 6.12, p < 0.05, �2 = 0.15]. At PO4, a significant main effect of learning phase
[F(1,34) = 4.99, p < 0.05, �2 = 0.13] and a marginally significant probability ×
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flexibility interaction [F(3,102) = 2.19, p = 0.094, �2 = 0.06], with simple effects
showing a marginal group difference only in the 0-1/3 condition (p = 0.071).

(2) Feedback Processing Stage

FRN amplitude was analyzed using two approaches. First, a 2 (learning
phase: pre/post) × 2 (stimulus probability: high/low) × 2 (reward feedback:
present/absent) × 2 (flexibility level) repeated measures ANOVA on the
average amplitude (200-300 ms) at frontocentral electrodes Fz, FCz, and Cz
revealed: a marginally significant main effect of probability [F(1,34) = 3.33, p
= 0.077, �2 = 0.09], with larger amplitude for low versus high probability; a
significant main effect of reward [F(1,34) = 74.05, p < 0.001, �2 = 0.69], with
larger amplitude for reward versus no-reward feedback; a marginally significant
three-way interaction of learning phase × reward × flexibility [F(1,34) = 3.40,
p = 0.074, �2 = 0.09], with simple effects showing significantly larger reward
than no-reward amplitudes in all conditions (p < 0.001); and a marginally
significant three-way interaction of learning phase × reward × probability
[F(1,34) = 3.47, p = 0.071, �2 = 0.09], with simple effects again showing
significantly larger reward than no-reward amplitudes in all conditions (p <
0.001). Grand-averaged waveforms and amplitudes for each condition are
shown in Figure 5.

To examine expectation effects in probabilistic category learning, we further
analyzed expected versus unexpected outcomes. Among the four probabilities
(0, 1/3, 2/3, 1), 0 and 1/3 were classified as low-probability conditions, while
2/3 and 1 were high-probability conditions. Receiving reward feedback under
high-probability conditions or no reward under low-probability conditions con-
stituted expected outcomes, whereas receiving no reward under high-probability
conditions or reward under low-probability conditions constituted unexpected
outcomes. Expected amplitude = low-probability no-reward amplitude - high-
probability reward amplitude; unexpected amplitude = high-probability no-
reward amplitude - low-probability reward amplitude.

A 2 (learning phase) × 2 (expectation: expected/unexpected) × 2 (flexibility
level) repeated measures ANOVA on FRN amplitude (200-300 ms at Fz, FCz,
Cz) revealed a marginally significant main effect of expectation [F(1,34) = 3.33,
p = 0.077, �2 = 0.09], with larger amplitude for unexpected versus expected
conditions (Figure 6), and a marginally significant learning phase × flexibility
interaction [F(1,34) = 3.40, p = 0.074, �2 = 0.09], though group differences were
not significant in either pre- or post-acquisition phases.

For the P300 component (300-400 ms at CPz, Pz, POz), a 2 × 2 × 2 × 2
repeated measures ANOVA revealed: a marginally significant main effect of
learning phase [F(1,34) = 3.30, p = 0.078, �2 = 0.09], with larger amplitude
pre- versus post-acquisition; a significant main effect of stimulus probability
[F(1,34) = 19.16, p < 0.001, �2 = 0.36], with larger amplitude for low versus
high probability; a significant main effect of reward feedback [F(1,34) = 52.80, p
< 0.001, �2 = 0.61], with larger amplitude for reward versus no-reward feedback;
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a significant learning phase × probability interaction [F(1,34) = 10.83, p < 0.05,
�2 = 0.24], with simple effects showing significant pre-post differences only for
high-probability conditions; a significant three-way interaction of probability
× reward × flexibility [F(1,34) = 5.30, p < 0.05, �2 = 0.14], though simple
effects showed no significant group differences in any condition; and a marginally
significant four-way interaction [F(1,34) = 3.18, p = 0.083, �2 = 0.09], with
simple effects showing a marginally significant group difference only in the pre-
acquisition-high-probability-reward condition [F(1,34) = 3.04, p = 0.091, �2 =
0.08]. Grand-averaged waveforms and amplitudes are shown in Figure 7.

ERP Results: Coin Search Task
Among 36 participants with both pre- and post-acquisition phases, three (all
high flexibility) were excluded due to excessive artifacts, leaving 33 participants
(21 high flexibility, 12 low flexibility) for ERP analysis.

(1) Choice Evaluation Stage

Separate 2 (learning phase) × 4 (probability pairing) × 2 (flexibility level) mixed
repeated measures ANOVAs on P200 amplitude (160-240 ms) at electrodes Pz,
P3, P4, POz, PO3, and PO4 revealed significant main effects of learning phase
across all electrodes. At Pz, post-acquisition P200 amplitude was significantly
smaller than pre-acquisition [F(1,31) = 6.65, p < 0.05, �2 = 0.18], with significant
reductions for the two conditions with 2/3 probability differences (0-2/3, 1/3-1;
p < 0.05). At P3, a significant main effect of learning phase [F(1,31) = 9.90,
p < 0.05, �2 = 0.24] and a marginally significant learning phase × probability
interaction [F(3,93) = 2.34, p = 0.08, �2 = 0.07] showed significantly larger pre-
than post-acquisition amplitudes for 0-2/3 and 1/3-1 pairings (p < 0.05). At
P4, a significant main effect of learning phase [F(1,31) = 12.23, p < 0.06, �2 =
0.28] was found. At POz, a significant main effect of learning phase [F(1,31) =
11.24, p < 0.056, �2 = 0.27] showed significant pre-post differences for all pairings
except 1/3-2/3 (which was marginal, p = 0.077). At PO3, a significant main
effect of learning phase [F(1,31) = 15.93, p < 0.001, �2 = 0.34] was observed. At
PO4, a significant main effect of learning phase [F(1,31) = 16.37, p < 0.001, �2
= 0.35] was found.

(2) Feedback Processing Stage

FRN amplitude was analyzed using the same two approaches as in the picture
task. A 2 (learning phase) × 2 (stimulus probability) × 2 (reward feedback) ×
2 (flexibility level) repeated measures ANOVA on FRN amplitude (200-300 ms
at Fz, FCz, Cz) revealed: a significant main effect of probability [F(1,31) = 5.31,
p < 0.05, �2 = 0.15], with larger amplitude for low versus high probability; a
significant main effect of reward feedback [F(1,31) = 44.26, p < 0.001, �2 = 0.59],
with larger amplitude for reward versus no-reward feedback; a marginally signif-
icant reward × flexibility interaction [F(1,31) = 3.38, p = 0.08, �2 = 0.10], with
simple effects showing significantly larger reward than no-reward amplitudes in
both groups (p < 0.05); a significant learning phase × probability interaction

chinarxiv.org/items/chinaxiv-202203.00066 Machine Translation

https://chinarxiv.org/items/chinaxiv-202203.00066


[F(1,31) = 5.38, p < 0.05, �2 = 0.15], with simple effects showing larger low-
versus high-probability amplitude post-acquisition (p < 0.05) and larger ampli-
tude pre- versus post-acquisition for high-probability conditions (p < 0.05); and
a significant three-way interaction of learning phase × probability × flexibility
[F(1,31) = 6.02, p < 0.05, �2 = 0.16]. Post-acquisition, high flexibility partici-
pants showed significantly larger amplitude for low versus high probability (p
= 0.001), and only high flexibility participants showed significantly larger am-
plitude pre- versus post-acquisition for high-probability conditions (p = 0.01).
Grand-averaged waveforms and amplitudes are shown in Figure 8.

A 2 (learning phase) × 2 (expectation: expected/unexpected) × 2 (flexibil-
ity level) repeated measures ANOVA on FRN amplitude revealed significant
main effects of expectation and a marginally significant main effect of flexibil-
ity, along with a significant learning phase × expectation interaction. Simple
effects analysis showed significant differences between expected and unexpected
amplitudes only post-acquisition. The three-way interaction of learning phase
× expectation × flexibility was significant, with simple effects showing signif-
icantly larger amplitude (more negative) in high versus low flexibility groups
for pre-acquisition-expected (p < 0.05) and post-acquisition-unexpected (p =
0.073) conditions (Figure 9).

For the P300 component (300-400 ms at CPz, Pz, POz), a 2 × 2 × 2 × 2
repeated measures ANOVA revealed: a significant main effect of probability
[F(1,31) = 17.28, p < 0.001, �2 = 0.36], with larger amplitude for low versus
high probability; a significant main effect of reward feedback [F(1,31) = 71.16, p
< 0.001, �2 = 0.70], with larger amplitude for reward versus no-reward feedback;
a significant probability × flexibility interaction [F(1,31) = 8.20, p < 0.05, �2
= 0.21], with simple effects showing significant high-low probability differences
only in the low flexibility group; and a significant learning phase × probability
interaction [F(1,31) = 4.18, p < 0.05, �2 = 0.12], with simple effects showing
significant pre-post differences only for high-probability conditions. No other
main effects or interactions were significant. Grand-averaged waveforms and
amplitudes are shown in Figure 10.

4.1 Learning Characteristics of Probabilistic Category
Tasks
Both experimental tasks involved dual processing of rule formation and prob-
ability estimation. Participants needed to identify the most probable response
criterion applicable to the entire task based on each trial’s“stimulus-response-
feedback”chain, and respond accordingly. Compared to typical probability esti-
mation tasks, neither task provided any prior probability information, requiring
participants to overcome a response bias toward finding deterministic outcomes
and ultimately accept inevitable occasional no-reward feedback (Craig et al.,
2011). Post-experiment interviews revealed that even when participants had
identified advantageous options, many continued testing alternative response
criteria, attempting to find a basis for consistently obtaining reward feedback,
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confirming the existence of a deterministic cognitive bias.

Learning curves, accuracy, and reaction time analyses indicated that although
participants distinguished between stimuli with higher and lower reward likeli-
hoods in the post-learning phase of both tasks, learning was weaker in the un-
cued picture selection task than in the coin search task. First, learning curves
showed that post-acquisition accuracy in the picture task hovered near baseline,
reflecting greater uncertainty about task rules compared to the coin search task.
Second, accuracy data revealed that in the picture task, post-acquisition accu-
racy for the 0-1/3 pairing was only 0.67, indicating no clear response preference.
This may be because both sides rarely provided positive feedback, preventing
participants from establishing a selection basis based solely on the 1/3 reward
probability of one side.

Why did learning outcomes differ between the uncued picture selection task
and the cued coin search task despite identical probability pairings? The likely
reason involves differences in rule representation levels and processing systems.
Whether probabilistic category learning relies on explicit verbal systems or im-
plicit procedural processing systems, and the relationship between these systems,
remains debated (Lagnado et al., 2006; Li et al., 2016; Xu et al., 2011). In the
picture selection task, few participants could clearly report their task basis after-
ward, and the additional stimulus ranking task was designed to help researchers
identify selection tendencies, suggesting implicit processing characteristics. In
contrast, most participants in the coin search task could describe their response
basis, indicating rule representation reached the explicit system. This benefit
derived from the presence of response cues: the difference in red square quan-
tities between sides helped transform the probability problem into a frequency
problem, reducing difficulty. This increased task transparency in the later learn-
ing stage, and previous research has demonstrated that high task transparency
and information volume promote explicit learning characteristics (Liu & Zheng,
2015). In the picture selection task, cues consisted solely of the stimulus mate-
rials themselves, preventing acquisition of correct response“shortcuts”through
feature associations. Connectionist learning theory proposes two independent
learning processes in probability learning: one relying on long-term memory
systems to form probability representations implicitly through accumulation,
and another relying on short-term memory systems to form probability expe-
rience through processing of recent events (Otto et al., 2011). In the picture
task, participants could only respond based on previously accumulated vague
probability representations and recent trial experience. Notably, implicit and
explicit systems may both participate in probabilistic learning (Li et al., 2012).
Our results suggest that both uncued tasks relying primarily on implicit pro-
cessing and cued tasks that can reach explicit levels through cue facilitation can
achieve acquisition, but cued probabilistic category learning substantially in-
creases learners’response confidence and demonstrates more stable acquisition.
Furthermore, research on high- versus low-probability cue effects found that
cues function effectively under high-probability conditions to facilitate selective
attention strategy generation (Girardi et al., 2013). Learners initially make se-
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lection judgments based on implicit information from inter-trial relationships,
but when a particular high-probability relationship or structure is perceived as
advantageous, the cognitive system organizes subsequent learning around this
cue. In our coin task, the large probability difference between advantageous
columns constituted such advantageous information, and results confirmed its
learning facilitation (significant pre-post amplitude reductions for the two con-
ditions with 2/3 probability differences: 0-2/3 and 1/3-1). Girardi et al. (2013)
further proposed that the mechanism locked to high-frequency cues serves as a
switch for endogenous attention component shifting during tasks.

4.2 Cognitive Flexibility Characteristics Across Learning
Stages
This study investigated cognitive flexibility effects from choice evaluation and
feedback processing perspectives in both uncued (picture selection) and cued
(coin search) tasks, finding that cognitive flexibility’s influence on learning
relates closely to task characteristics.

In the choice evaluation stage, no evidence of cognitive flexibility effects emerged
in the coin task, while in the picture task, only marginal group differences ap-
peared for the 0-1/3 probability pairing at P3 and PO4 electrodes. These results
contradict Dong et al.’s (2016) findings of differential performance between high
and low cognitive flexibility individuals in the Iowa Gambling Task and fail to
support our hypotheses. Researchers have noted that the P200 component an-
alyzed in this stage relates to stimulus perception, attention processing, and
short-term memory (Dong et al., 2016; Xing et al., 2017). Although ERP group
difference results were similar across tasks, the underlying reasons likely differ.
In the uncued picture task, minimal group differences occurred because even
high flexibility learners failed to form stable differential representations for all
stimulus pairings. In the cued coin task, significant learning phase main effects
at multiple electrodes indicated that stimuli were differentially represented. The
absence of group differences likely resulted from cue and Block 2 design features
that reduced between-group disparities.

In the feedback processing stage, the high cognitive flexibility group showed
higher accuracy than the low flexibility group in the picture selection task. For
the P300 component, high flexibility group amplitude was marginally larger
than the low flexibility group in the pre-acquisition-high-probability-reward con-
dition. The P300 component primarily reflects top-down controlled outcome
evaluation processes, with factors attracting more attention allocation—includ-
ing reward valence and magnitude—influencing P300 amplitude (Wu & Zhou,
2009). High-probability stimuli with reward feedback could rapidly attract high
cognitive flexibility learners’attention, allowing them to process such stimuli
with fewer cognitive resources. In the coin search task, the high flexibility group
showed marginally faster reaction times and significantly higher post-acquisition
accuracy than the low flexibility group. For the FRN component, high flexibil-
ity group amplitude was marginally larger than the low flexibility group, with
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significantly larger amplitude in high flexibility participants for pre-acquisition-
expected and post-acquisition-unexpected conditions. FRN reflects expectation
formation for subsequent possible outcomes based on cue evaluation (Bellebaum
& Daum, 2008; Li et al., 2018). In our probabilistic category learning tasks,
FRN formation required learners to develop expectations for response outcomes
following specific cues based on “stimulus-response-feedback”learning. Data
indicated that before behavioral responses reached the acquisition criterion in
the coin search task, high flexibility individuals already formed stronger ex-
pectations for expected outcomes, while post-acquisition, “high-probability-no-
reward”and “low-probability-reward”outcomes were more surprising to them.
However, even high flexibility participants failed to form stable expectations for
response outcomes across all conditions in the picture selection task, prevent-
ing FRN differences from emerging—consistent with behavioral curve differences
between tasks.

Our findings demonstrate that in probabilistic category tasks, high cognitive
flexibility groups achieve higher rule acquisition rates than low flexibility groups,
with ERP results further indicating that this learning advantage is intimately
connected to feedback processing. Effective processing of feedback information
—whether external explicit feedback or internal implicit feedback—helps learners
identify gaps between current and goal states and generate alternative solutions.
Flexibility development depends on selecting and using appropriate information
to understand the current situation (Spiro, 1988), and learners who can effec-
tively integrate feedback information with problem contexts more easily discover
rules and obtain solutions. Research has confirmed that this reflective think-
ing tendency significantly positively predicts cognitive flexibility (Orakci, 2021).
Our results with college student participants indicate that under completely
non-intervention conditions, low flexibility learners cannot achieve equivalent
learning outcomes as high flexibility learners (similar acquisition rates, similar
conflict detection levels) when provided with identical feedback information.

Additionally, from a task difficulty reduction perspective, we included a Block
2 design in the coin search task, which may have directly reduced between-
group differences, as learning curves showed acquisition turning points were
very close between flexibility groups, with differential evidence emerging only
for specific conditions in choice evaluation (e.g., 0-1/3 probability pairing) and
feedback processing (pre-acquisition-expected and post-acquisition-unexpected
conditions).

4.3 Limitations and Future Directions
This study used two probabilistic category tasks differing in cue presence to
explore cognitive flexibility’s role in probabilistic category learning. Further
matching of task characteristics would enable more adequate comparative anal-
ysis. Building on matched tasks, future research could investigate cognitive
flexibility effects using more richly layered cue features.
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In conclusion: First, in probabilistic category tasks, high cognitive flexibility
groups demonstrate superior rule acquisition compared to low flexibility groups,
indicating cross-task advantages for cognitive flexibility. Second, high cognitive
flexibility individuals’advantages in probabilistic category learning originate
from feedback processing.
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