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Abstract
Response inhibition refers to the ability to suppress inappropriate or currently
unnecessary behaviors. Studies have demonstrated that response inhibition is
primarily associated with the functional integrity of the inferior frontal gyrus,
dorsolateral prefrontal cortex, and pre-supplementary motor area. Transcranial
direct current stimulation (tDCS) is a non-invasive brain stimulation technique.
In recent years, research employing tDCS to modulate response inhibition by
stimulating relevant brain regions in healthy populations has proliferated; how-
ever, the primary findings remain inconsistent. Elucidating the specific neural
mechanisms through which tDCS influences response inhibition, reducing het-
erogeneity across tDCS studies, exploring more effective tDCS stimulation pro-
tocols, and establishing age-dependent differences in tDCS efficacy have become
pressing issues requiring immediate resolution.
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Abstract: Response inhibition refers to the ability to suppress inappropriate
or no-longer-needed behaviors. Research indicates that response inhibition is
primarily associated with the functions of the inferior frontal gyrus, dorsolat-
eral prefrontal cortex, and pre-supplementary motor area. Transcranial direct
current stimulation (tDCS) is a non-invasive brain stimulation technique that
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has gained increasing attention in recent years for its potential to modulate re-
sponse inhibition by targeting these brain regions in healthy populations. How-
ever, the main findings remain inconsistent. Elucidating the specific neural
mechanisms through which tDCS influences response inhibition, reducing het-
erogeneity across tDCS studies, exploring more effective stimulation protocols,
and determining age-dependent differences in tDCS effects have become urgent
priorities.

Keywords: response inhibition, transcranial direct current stimulation, infe-
rior frontal gyrus, dorsolateral prefrontal cortex, pre-supplementary motor area,
stop-signal task, go/nogo task

1 Introduction
When a response is required, we initiate action; yet when that response becomes
inappropriate or unnecessary, we must be able to suppress the impulse. Con-
sider crossing an intersection when the light suddenly turns red, forcing us to
inhibit the forward motion; or a driver suppressing the ongoing action of pressing
the accelerator upon seeing a reckless pedestrian; or halting an email transmis-
sion upon realizing it is addressed to the wrong recipient. All these situations
involve response inhibition—the capacity to suppress inappropriate or no-longer-
needed behaviors to enable flexible, goal-directed responses to environmental
changes. As a critical component of executive function, response inhibition rep-
resents one of the most essential cognitive abilities for healthy populations and
is closely linked to numerous pathological conditions. Deficits in response inhibi-
tion have been documented in attention deficit hyperactivity disorder (ADHD),
obsessive-compulsive disorder (OCD), schizophrenia, and substance addiction.
Furthermore, response inhibition is associated with decision-making and work-
ing memory, constituting a fundamental ability for normal daily functioning.

Response inhibition also manifests in specific capacities that can be enhanced to
improve related abilities. For instance, military personnel’s response inhibition
is relevant to combat effectiveness, with research demonstrating that improved
response inhibition reduces shooting errors and significantly decreases civilian
casualties in simulated combat scenarios. In recent years, investigating the neu-
ral mechanisms of response inhibition has attracted widespread research interest.
The Go/Nogo task (GNG) and stop-signal task (SST) are common paradigms for
studying response inhibition. Combined with neuroimaging, transcranial mag-
netic stimulation (TMS), and electroencephalography (EEG), extensive research
has shown that response inhibition function is closely related to the prefrontal
cortex (PFC) and basal ganglia, particularly the right inferior frontal gyrus
(rIFG/rIFC), dorsolateral prefrontal cortex (DLPFC), and pre-supplementary
motor area (pre-SMA).

The right inferior frontal gyrus is a crucial brain region for response inhibition.
Studies of brain lesions and functional impairments provide strong support for
rIFG’s role in response inhibition. Research has shown that patients with
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rIFG damage exhibit impaired performance on response inhibition tasks, and
TMS-induced disruption of rIFG function similarly reduces response inhibition
capacity. The dorsolateral prefrontal cortex also contributes to response inhibi-
tion, with high-frequency rTMS over the left DLPFC improving performance on
continuous performance tests. Numerous studies have additionally implicated
the pre-SMA in response inhibition processes, with fMRI revealing increased
pre-SMA activation during successful inhibition and pre-SMA damage leading
to impaired SST performance. The basal ganglia, a collection of subcortical
nuclei including the caudate, putamen, globus pallidus, and subthalamic nu-
cleus, represent an essential component of response inhibition neural circuits.
Diffusion-weighted imaging has demonstrated white matter tract connections be-
tween the IFC, subthalamic nucleus, and pre-SMA. Researchers have proposed
a frontal-basal ganglia model to explain the neural mechanisms of response in-
hibition, wherein rIFG and pre-SMA generate stop commands transmitted to
the basal ganglia, which then reduce motor cortex drive through output nuclei
to suppress motor impulses.

Non-invasive brain stimulation techniques such as TMS have been widely used in
response inhibition research. In recent years, transcranial direct current stimula-
tion (tDCS) has emerged as a novel non-invasive technique garnering increasing
attention. Unlike neuroimaging and EEG, which primarily reveal correlational
relationships, tDCS enables investigation of causal relationships between brain
function and behavior. tDCS differs from TMS in several respects. Mecha-
nistically, TMS uses a magnetic coil to induce electric currents in underlying
brain tissue, whereas tDCS delivers weak direct current (typically 0.5–2 mA)
through scalp electrodes, partially penetrating the skull to affect cortical activ-
ity. tDCS has two polarities: anodal stimulation generally increases cortical
excitability, while cathodal stimulation decreases it. Regarding safety, both
techniques are generally safe when applied within recommended parameters,
though rTMS carries a minimal risk of serious adverse events such as seizures,
whereas tDCS typically produces only mild sensory effects without reports of
severe adverse events. tDCS is thought to exert its effects through non-synaptic
mechanisms (altering resting membrane potential) and synaptic-level long-term
potentiation/depression mechanisms, with longer or repeated stimulation pro-
ducing lasting after-effects and plasticity changes. Overall, tDCS represents a
safe, tolerable, non-invasive, portable, and convenient technique for modulating
cortical function and cognitive abilities.

Fortunately, response inhibition is plastic and can be enhanced through cog-
nitive augmentation techniques. Two main approaches exist for healthy popu-
lations: cognitive training, which is time-consuming and relatively inefficient,
and non-invasive brain stimulation, particularly tDCS, which offers technical
advantages. An increasing number of researchers are exploring whether tDCS
targeting specific anatomical regions can enhance response inhibition in healthy
populations—a question with significant implications for increasing resilience
to psychiatric disorders and improving related abilities. This review examines
studies investigating tDCS effects on response inhibition in healthy participants,
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focusing primarily on rIFG, DLPFC, and pre-SMA stimulation, with behavioral
outcomes measured through GNG and SST performance. Nogo error rates (or
accuracy) serve as the primary GNG metric, while stop-signal reaction time
(SSRT) is the main SST indicator. We first discuss findings from each stimula-
tion target, summarizing parameters and positive or negative results to enhance
understanding of previous research, then address limitations in existing studies,
and finally explore future directions for more scientifically rigorous, efficient,
targeted, and standardized tDCS protocols for enhancing response inhibition.

2 Effects of tDCS Over the Right Inferior Frontal Gyrus on
Response Inhibition
The right inferior frontal gyrus represents a higher-order brain region for re-
sponse inhibition. Aron et al. (2014) described the rIFC and its associated
neural network (the frontal-basal ganglia network) as a “brake”upon which
response inhibition depends. Numerous tDCS studies have targeted rIFG to
investigate its impact on response inhibition function (Table 1).

Anodal tDCS over rIFG can enhance response inhibition capacity. Jacobson et
al. (2011) applied tDCS to participants’rIFG during SST performance, finding
that anodal stimulation significantly reduced SSRT compared to sham stimu-
lation, with no effect on a control task differing only by the absence of stop
signals. This demonstrates region-specific modulation of response inhibition
rather than general cognitive ability. Campanella et al. (2018) used conditional
accuracy functions (CAF) to assess GNG performance, revealing that anodal
rIFG stimulation reduced the accuracy decline typically observed with rapid re-
sponses, indicating improved inhibition efficiency. Additional studies have sim-
ilarly demonstrated enhanced response inhibition following anodal tDCS over
rIFG.

Neuroimaging research indicates that tDCS affects response inhibition at both
behavioral and neurophysiological levels. Sandrini et al. (2020) conducted two
experimental sessions, first establishing baseline SST performance, then admin-
istering anodal or sham tDCS over rIFC following resting-state fMRI. Post-
stimulation fMRI and event-related fMRI during SST revealed that anodal
tDCS significantly shortened SSRT, enhanced connectivity between pre-SMA
and subthalamic nucleus during stop trials, and altered intrinsic connectivity
among rIFC, caudate, pre-SMA, and right DLPFC.

Combining anodal tDCS with response inhibition training may produce supe-
rior enhancement effects. Ditye et al. (2012) investigated SST training com-
bined with anodal tDCS over rIFG, administering 8 minutes of training and 15
minutes of tDCS (1.5 mA) daily for four days. Results showed that while train-
ing alone improved response inhibition, the combination with tDCS produced
greater enhancement. Hogeveen et al. (2016) compared conventional tDCS,
high-definition tDCS (HD-tDCS), and sham stimulation over rIFC during SST
training versus control task training. Both active stimulation groups showed
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improved response inhibition when combined with SST training but not with
control training, suggesting that task relevance influences stimulation effects,
possibly because tasks more closely related to response inhibition pre-activate
corresponding neural populations, making them more susceptible to external
current modulation.

Interestingly, researchers have distinguished between reactive and proactive inhi-
bition, proposing that rIFG participates in both processes. Proactive inhibition
is indexed by increased go-trial reaction times, while reactive inhibition is mea-
sured by SSRT reduction. Cunillera et al. (2014) applied tDCS to rIFC using
a combined GNG-SST task, finding that anodal stimulation increased go-trial
reaction times while decreasing SSRT, demonstrating dual effects on both inhi-
bition types. However, Cunillera et al. (2016) failed to replicate these findings,
observing increased go-trial reaction times but no significant SSRT changes.
Another study targeting rIFG with SST found SSRT reduction during and af-
ter anodal stimulation without significant differences in go-trial reaction times.
Given the limited research and inconsistent results, whether rIFG possesses dual
inhibitory functions requires further investigation.

Although most studies demonstrate improved response inhibition following an-
odal rIFG stimulation, some report null effects, likely due to heterogeneity in
stimulation parameters (current intensity, location, reference electrode position,
polarity, duration), response inhibition measures, and population character-
istics. For example, one recent study using dual-tDCS over rIFG and right
DLPFC with 9 cm2 electrodes found no behavioral changes, possibly because
proximal stimulation sites and large electrode areas caused current dispersion.
Methodological differences, such as using the relatively simple GNG task ver-
sus the adaptively difficult SST, may produce ceiling effects. Campanella et
al. (2018) suggested that overall error rates lack sensitivity for detecting subtle
GNG performance changes, which may explain negative findings in Campanella
et al. (2017). Fujiyama et al. (2021) demonstrated age-dependent tDCS effects,
with anodal rIFG stimulation reducing SSRT in young adults (24 ± 4.9 years)
but not older adults (69 ± 5.8 years). These findings underscore the need to
consider multiple factors to reduce experimental heterogeneity.

Table 1 Effects of tDCS on response inhibition function in the right inferior
frontal gyrus region

Study Task Stimulation Current Intensity Duration Main Effects
Jacobson
et
al. (2011)

SST A/C/S 1 mA 10 min Anodal
stimulation
reduced
SSRT;
cathodal had
no significant
effect
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Study Task Stimulation Current Intensity Duration Main Effects
Ditye
et
al. (2012)

SST A/S 1.5 mA 15 min Training
reduced
SSRT;
anodal
stimulation
enhanced
training
effects

Cunillera
et
al. (2014)

GNG-
SST

A/S 1 mA 18 min Anodal
stimulation
reduced
SSRT and
increased
GoRT

Dambacher
et
al. (2015)

GNG A/C/S 1 mA 21.75
min

No
significant
differences in
Nogo error
rates across
groups

Stramaccia
et
al. (2015)

SST A/C/S 1 mA 20 min Anodal
stimulation
reduced
SSRT;
cathodal had
no significant
effect

Cai et
al. (2016)

SST A/S 1 mA 15 min Anodal
stimulation
reduced
SSRT and
increased
GoRT

Cunillera
et
al. (2016)

GNG-
SST

A/S 1 mA 20 min Anodal
stimulation
had no
significant
effect on
SSRT but
increased
GoRT
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Study Task Stimulation Current Intensity Duration Main Effects
Hogeveen
et
al. (2016)

SST A 1.5 mA 20 min HD-tDCS
combined
with SST
training
reduced
SSRT;
HD-tDCS
with CRT
training had
no effect

Castro-
Meneses
et
al. (2016)

SST A/S 1 mA 15 min Anodal
stimulation
reduced
SSRT; GoRT
showed no
significant
difference

Campanella
et
al. (2017)

GNG A/S 1.5 mA 20 min No
significant
difference in
Nogo error
rates
between
anodal and
sham

Campanella
et
al. (2018)

GNG A/S 1.5 mA 20 min Anodal
stimulation
reduced
accuracy
decline
during rapid
responses

Leite
et
al. (2018)

GNG A/S 2 mA 30 min No
significant
difference in
Nogo
accuracy
between
anodal and
sham
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Study Task Stimulation Current Intensity Duration Main Effects
Li et
al. (2019)

SST A/C/S 1.5 mA 4 min 12
sec

Anodal
stimulation
reduced
SSRT;
cathodal had
no significant
effect

Chen
et
al. (2019)

modified
SST

A 1.5 mA 20 min Anodal
stimulation
reduced
SSRT

Sandrini
et
al. (2020)

SST A/S 1.5 mA 20 min Anodal
stimulation
shortened
SSRT

Thunberg
et
al. (2020)

SST A/S 1.5 mA 20 min No
significant
difference in
SSRT
between
anodal and
sham

Friehs,
Brauner
et
al. (2021)

SST A/C/S 1.5 mA 20 min No
significant
differences in
SSRT across
groups

Fujiyama
et
al. (2021)

modified
SST

A/S 1.5 mA 20 min Anodal
stimulation
significantly
reduced
SSRT in
young adults
but not older
adults

Note: A: anodal stimulation; C: cathodal stimulation; S: sham stimulation;
GNG: go/nogo task; GoRT: go-trial reaction time; SST: stop-signal task; mod-
ified SST: SST variant; SSRT: stop-signal reaction time; GNG-SST: combined
GNG and SST task
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3 Effects of tDCS Over the Dorsolateral Prefrontal Cortex
on Response Inhibition
The dorsolateral prefrontal cortex is associated with numerous cognitive func-
tions including working memory, attention, decision-making, and cognitive con-
trol, but it also represents an important region for response inhibition. In recent
years, DLPFC has become a key target for tDCS studies of response inhibition
function (Table 2).

Research demonstrates that tDCS over DLPFC can modulate response inhibi-
tion, with studies targeting both left and right hemispheres. Friehs and Frings
(2018) targeted right DLPFC, finding that anodal stimulation reduced SSRT
compared to sham. A subsequent study using an SST variant replicated this ef-
fect. In another experiment, cathodal stimulation over right DLPFC increased
SSRT, indicating impaired response inhibition. Together, these findings sug-
gest polarity-specific modulation: anodal stimulation enhances while cathodal
stimulation impairs response inhibition. Nejati et al. (2018) applied anodal stim-
ulation to left DLPFC, observing increased Nogo accuracy compared to sham,
while other left DLPFC studies also reported SSRT reductions. These results
indicate that both right and left DLPFC are involved in response inhibition,
though the functional lateralization remains to be fully elucidated.

Combining tDCS with response inhibition training has yielded mixed results.
Dousset et al. (2021) employed four days of tDCS combined with GNG training,
finding that anodal right DLPFC stimulation produced the greatest improve-
ment in Nogo accuracy at one-week follow-up. However, Sedgmond et al. (2019)
found no significant effects of single-session tDCS combined with GNG train-
ing, possibly due to individual variability and unstable single-session effects,
suggesting the need for more intensive investigation of combined protocols.

Despite evidence for tDCS effects on response inhibition, several studies report
null behavioral outcomes. Lapenta et al. (2014) found no behavioral differ-
ences between anodal right DLPFC stimulation and sham on a modified GNG
task, though EEG revealed reduced N2 amplitude and increased P3a ampli-
tude, suggesting enhanced inhibition at the neurophysiological level. Stramac-
cia et al. (2015) observed no SSRT changes following right DLPFC stimulation,
while anodal rIFG stimulation significantly reduced SSRT, possibly reflecting
shorter-lasting DLPFC effects or differential contributions of distinct brain re-
gions. Chen et al. (2021) reported that both anodal and cathodal stimulation
over right DLPFC reduced SSRT, contrasting with Friehs and Frings (2019) who
found cathodal stimulation increased SSRT. These discrepancies may stem from
differences in reference electrode placement and resulting indirect modulatory
effects on adjacent frontal regions.

Individual differences substantially influence tDCS effects on response inhibition.
Nieratschker et al. (2015) found that cathodal tDCS over left DLPFC impaired
response inhibition only in COMT Val homozygotes, not Met allele carriers,
suggesting genetic modulation via prefrontal dopaminergic activity. However,
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Plewnia et al. (2013) found no COMT genotype interaction, indicating the need
for further investigation. Weidacker et al. (2016) demonstrated that higher cold-
heartedness scores predicted better performance under cathodal stimulation, po-
tentially reflecting restoration of excitatory-inhibitory balance. Wu et al. (2021)
showed that baseline performance level moderated tDCS effects, with cathodal
stimulation improving Nogo accuracy in low-baseline participants while impair-
ing high-baseline performers, resulting in null group-level effects. These findings
highlight the importance of considering individual variability in experimental de-
sign, analysis, and application to reduce heterogeneity and advance personalized
neuromodulation approaches.

Table 2 Effects of tDCS on response inhibition function in the dorsolateral
prefrontal cortex

Study Stimulation Target Current Intensity Duration Main Effects
Plewnia
et
al. (2013)

A/C/S left
DLPFC

2 mA 20 min No COMT
genotype
difference in
tDCS effects
on Nogo
accuracy

Lapenta
et
al. (2014)

A right
DLPFC

2 mA 30 min No
behavioral
difference
between
anodal and
sham; EEG
showed
neurophysio-
logical
changes

Nieratschker
et
al. (2015)

C left
DLPFC

2 mA 20 min Cathodal
stimulation
reduced
Nogo
accuracy
only in
COMT Val
homozygotes

Stramaccia
et
al. (2015)

A/C/S right
DLPFC

1 mA 20 min No
significant
SSRT
differences
from sham
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Study Stimulation Target Current Intensity Duration Main Effects
Weidacker
et
al. (2016)

A/C/S right
DLPFC

1 mA 20 min Higher cold-
heartedness
scores
predicted
better
performance
under
cathodal
stimulation

Mansouri
et
al. (2017)

A left
DLPFC

1.5 mA 20 min Anodal
stimulation
reduced
SSRT under
fast-paced
music

Nejati
et
al. (2018)

A/C/S left
DLPFC

1.5 mA 20 min Anodal
stimulation
increased
Nogo
accuracy

Wang
et
al. (2018)

A right
DLPFC

1.5 mA 20 min Anodal
stimulation
reduced
SSRT

Friehs
&
Frings
(2018)

A right
DLPFC

1.5 mA 20 min Anodal
stimulation
reduced
SSRT

Fehring
et
al. (2019)

A left
DLPFC

1.5 mA 20 min Anodal
stimulation
reduced
SSRT

Friehs
&
Frings
(2019)

C right
DLPFC

1.5 mA 20 min Cathodal
stimulation
increased
SSRT

Sedgmond
et
al. (2019)

A right
DLPFC

1.5 mA 20 min No
difference in
Nogo
accuracy
between
anodal and
sham with
training
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Study Stimulation Target Current Intensity Duration Main Effects
Chen
et
al. (2021)

A/C/S right
DLPFC

1.5 mA 20 min Both anodal
and
cathodal
stimulation
reduced
SSRT
compared to
sham

Dousset
et
al. (2021)

A right
DLPFC

1.5 mA 20 min Anodal
stimulation
with
training
reduced
GoRT and
Nogo error
rates

Friehs,
Brauner
et
al. (2021)

A/C/S right
DLPFC

1.5 mA 20 min No
significant
SSRT
differences
across
groups

Friehs,
Dechant
et
al. (2021)

A right
DLPFC

1.5 mA 20 min Anodal
stimulation
reduced
SSRT

Wu et
al. (2021)

A/C/S right
DLPFC

1.5 mA 20 min No
group-level
differences
in Nogo
accuracy or
SSRT

Note: A: anodal stimulation; C: cathodal stimulation; S: sham stimulation;
DLPFC: dorsolateral prefrontal cortex; GNG: go/nogo task; PGNG: parametric
go/nogo task; modified GNG: GNG variant; SST: stop-signal task; modified SST:
SST variant; GoRT: go-trial reaction time; SSRT: stop-signal reaction time

4 Effects of tDCS Over the Pre-supplementary Motor Area
on Response Inhibition
The pre-supplementary motor area is a critical neural substrate for response
inhibition and an important node in the frontal-basal ganglia model, making it
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a popular target for tDCS research (Table 3).

Extensive behavioral evidence demonstrates that anodal tDCS over pre-SMA
enhances response inhibition. Hsu et al. (2011) applied anodal, cathodal, and
sham stimulation to pre-SMA during SST performance. Compared to other con-
ditions, anodal stimulation significantly reduced stop-trial error rates, though
SSRT did not differ significantly. This may reflect the use of a fixed SSD deter-
mined from pre-testing without accounting for tDCS-induced changes. Kwon
and Kwon (2013a, 2013b) replicated these findings, showing that anodal pre-
SMA stimulation reduced SSRT compared to sham, with effects persisting dur-
ing and after stimulation. Fujiyama et al. (2021) demonstrated that anodal
pre-SMA stimulation significantly reduced SSRT in older adults (68.5 ± 5.3
years), confirming pre-SMA as an important target for modulating response
inhibition.

Anodal tDCS over pre-SMA shows neurophysiological as well as behavioral
effects. Liang et al. (2014) replicated Hsu et al.’s findings while addition-
ally demonstrating SSRT reduction. Multiscale entropy analysis of EEG sig-
nals revealed that higher entropy correlated with better inhibition performance
and that anodal tDCS further increased entropy. Yu et al. (2015) similarly
found SSRT reduction following anodal pre-SMA stimulation, accompanied by
increased blood oxygen level-dependent (BOLD) responses in pre-SMA and ven-
tromedial prefrontal cortex (vmPFC). The tDCS-induced BOLD signal increase
correlated positively with improved inhibition efficiency and enhanced pre-SMA-
vmPFC functional connectivity.

Despite most studies demonstrating enhanced response inhibition following an-
odal pre-SMA stimulation, some report no behavioral improvement. Bender
et al. (2017) found no differences in SSRT or inhibition success rates between
anodal stimulation and control conditions, possibly due to lower current inten-
sity and shorter duration compared to previous studies, or different reference
electrode placement (right mastoid versus left cheek). Fujiyama et al. (2021)
showed age-dependent effects, with anodal stimulation reducing SSRT in older
but not younger adults (22.4 ± 4.2 years), potentially reflecting anatomical fea-
tures affecting stimulation efficacy or true age-dependent effects. As reported
in the literature, variations in current intensity, duration, reference electrode
position, and population characteristics can produce different outcomes.

Table 3 Effects of tDCS on response inhibition function in the pre-
supplementary motor area
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Study Task Stimulation Current Intensity Duration Main Effects
Hsu et
al. (2011)

SST A/C/S 1.5 mA 10 min Anodal
stimulation
reduced
stop-trial
error rates;
no SSRT
differences

Kwon
&
Kwon
(2013a)

SST A 1 mA 10 min Anodal
stimulation
reduced
SSRT

Kwon
&
Kwon
(2013b)

SST A 1 mA 10 min Anodal
stimulation
reduced
SSRT during
and after
stimulation

Liang
et
al. (2014)

SST A 1.5 mA 10 min Anodal
stimulation
reduced both
stop-trial
error rates
and SSRT

Yu et
al. (2015)

SST A 1.5 mA 20 min Anodal
stimulation
reduced
SSRT

Bender
et
al. (2017)

modified
SST

A/C/S 0.7 mA 9 min No
significant
SSRT
differences
from sham

Fujiyama
et
al. (2021)

modified
SST

A/S 1.5 mA 20 min Anodal
stimulation
reduced
SSRT in
older adults
but not
young adults

Note: A: anodal stimulation; C: cathodal stimulation; S: sham stimulation; SST:
stop-signal task; modified SST: SST variant; SSRT: stop-signal reaction time
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5 Summary and Outlook
Numerous studies have examined tDCS effects on response inhibition by target-
ing different brain regions, yielding meaningful results that demonstrate tDCS’
s potential as a tool for enhancing response inhibition in healthy populations.
However, several limitations and unresolved issues remain.

First, the neural mechanisms underlying tDCS modulation of response inhibi-
tion are not fully understood. Two key questions persist: the precise physiolog-
ical neural circuits of response inhibition, particularly the temporal dynamics
of cortical region involvement, and the identification of critical brain regions
whose stimulation produces maximal effects. While the frontal-basal ganglia
model provides a framework incorporating rIFG, DLPFC, pre-SMA, and basal
ganglia, it has notable gaps. The temporal sequence of cortical region activa-
tion remains unclear, with inconsistent reports about whether rIFG functions
upstream or downstream of pre-SMA, or whether bidirectional connections ex-
ist. Methodologies such as electrocorticography may help clarify these temporal
dynamics. Additionally, the current model does not adequately incorporate
DLPFC, despite evidence for its involvement, suggesting more complex neural
circuits remain to be elucidated. Furthermore, it is uncertain which brain region
constitutes the critical target for tDCS modulation of response inhibition. While
stimulation of rIFG, DLPFC, and pre-SMA all affect response inhibition, these
conclusions derive from different experimental designs and parameters, prevent-
ing direct comparison. Future studies should employ rigorous controlled designs
to compare different stimulation targets within the same experiment, combin-
ing behavioral, neurophysiological, and neuroimaging techniques to isolate the
specific contributions of each region.

Second, research findings exhibit substantial heterogeneity. While most studies
demonstrate tDCS can modulate response inhibition, null results also emerge
due to individual differences, stimulation parameters (current magnitude, du-
ration, electrode size, position), and behavioral task characteristics (analysis
methods, difficulty). Notably, different analytical approaches to the same data
can yield inconsistent results. Campanella et al. (2017) found no group differ-
ences using traditional error rate analysis, yet Campanella et al. (2018) detected
improved performance using conditional accuracy functions on the same dataset.
Similarly, drift diffusion model reanalysis of existing data revealed that anodal
stimulation increased inhibition tendency while reducing impulsivity. Future
research must carefully control for these factors to reduce heterogeneity and
improve reproducibility. We recommend: (1) Controlling individual differences
through homogeneous sampling and within-subject designs, while addressing
potential blinding issues through realistic sham protocols and post-stimulation
questionnaires; (2) Using standardized tDCS parameters, with electrode place-
ment guided by the 10-20 system or fMRI, current intensities of 0.5–2 mA, dura-
tions of 20 minutes, and computational modeling to verify electric field distribu-
tion; and (3) Optimizing behavioral tasks to prevent ceiling/floor effects, using
adaptive difficulty adjustment, standardized protocols, and consensus guidelines
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for task implementation and analysis.

Third, tDCS research requires improved spatial resolution. Most studies use con-
ventional tDCS with large rectangular electrodes (25–35 cm2), resulting in low
spatial resolution and diffuse current spread that complicates mechanistic inter-
pretation. High-definition tDCS (HD-tDCS) using small circular electrodes in
a 4$×$1 montage provides higher spatial resolution and more focal stimulation,
producing more robust behavioral and neurophysiological effects. However, few
studies of response inhibition in healthy populations have employed HD-tDCS.
Future research should increasingly utilize HD-tDCS to enhance spatial preci-
sion, simplify mechanistic interpretations, and improve result reliability.

Fourth, the combination of tDCS with response inhibition training requires fur-
ther investigation. While both training alone and tDCS alone can enhance
response inhibition, combined approaches may be more effective. Studies have
employed online (simultaneous) and offline (sequential) combination protocols
with inconsistent results. Ditye et al. (2012) found offline combination superior
to training alone, while Hogeveen et al. (2016) demonstrated online combination
benefits. However, Sedgmond et al. (2019) found no effect of online combina-
tion, and protocols vary in stimulation frequency and timing. Future research
must systematically investigate optimal combination approaches, including on-
line versus offline protocols and stimulation parameters.

Fifth, different stimulation protocols warrant exploration. Most studies employ
single-session stimulation with effects lasting approximately 90 minutes, though
HD-tDCS effects may persist for 2 hours. Multi-session stimulation can produce
longer-lasting effects and has been safely applied in other domains, yet few stud-
ies have examined repeated stimulation for response inhibition in healthy popu-
lations. Future research should investigate the efficacy and long-term effects of
multi-session protocols. Additionally, combining tDCS with other stimulation
methods, such as transcutaneous auricular vagus nerve stimulation (taVNS),
may produce synergistic effects. Multi-site stimulation targeting multiple brain
regions simultaneously represents another promising approach that has shown
benefits in motor and working memory studies but remains unexplored for re-
sponse inhibition.

Finally, research across different age groups is limited. Most studies recruit
young adults (20–30 years), with minimal research in children and only one
study in older adults. Fujiyama et al. (2021) demonstrated that while older
adults showed preserved plasticity, tDCS effects were evident only for pre-SMA
stimulation, not rIFG, suggesting age-dependent differences in stimulation effi-
cacy. Given that response inhibition declines with age and develops throughout
childhood, investigating tDCS effects across the lifespan is both theoretically
important and clinically relevant. Future studies should include diverse age
groups to understand developmental and aging-related differences and develop
age-appropriate protocols.

In summary, tDCS is a safe and effective non-invasive brain stimulation tech-
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nique that can modulate neural activity in brain regions involved in response
inhibition to affect cognitive function. However, current research has limitations
that must be addressed. Future studies should elucidate neural mechanisms, re-
duce heterogeneity, increase spatial resolution through HD-tDCS, optimize com-
bination with training, explore multi-session and multi-site protocols, and inves-
tigate effects across different age groups. Such advances will provide stronger
evidence for optimizing tDCS applications to enhance response inhibition in
healthy populations.
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