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Abstract

[Objective] To investigate whether driving characteristics influence drivers’stress
responses and behaviors when facing traffic hazard events. [Methods] This study
employed the Vienna Traffic Psychological Test System (VTS) to test partici-
pants in a driving simulation experiment. In the driving simulation experiment,
participants were required to drive at a speed of 60 km/h, with three distance
settings between the stressor and the participant’ s vehicle corresponding to
Time-to-Collision (TTC): 19.2 m (TTC=1 s), 27.5 m (TTC=1.5 s), and 35.8
m (TTC=2 s). The study utilized a set pair analysis model to evaluate the
quality of participants’ stress responses, where the range of evaluation grades
for indicators was determined by K-means clustering, and the weights of indi-
cators were determined by the entropy weight method. [Results] The results
demonstrate that judging drivers’ stress response capabilities through driving
characteristics is effective, manifesting in two specific aspects: First, under all
stress distances, participants with high driving characteristics exhibited supe-
rior stress responses compared to those with low driving characteristics; Second,
when the stress distance was 19.2 m (TTC=1 s), the response evaluation for par-
ticipants with high driving characteristics was two grades higher than that for
participants with low driving characteristics, whereas at other stress distances it
was only one grade higher, indicating that participants with low driving charac-
teristics were more sensitive to reductions in stress response distance than those
with high driving characteristics. [Limitations] Insufficient demographic repre-
sentation in the sample. [Conclusion] The findings of this study substantiate
the rationality of providing drivers with more than 1 s of Time-to-Collision in
traffic stress events, which can offer references for the design of accident warn-
ing and collision avoidance systems. Additionally, the mathematical method for
grade evaluation proposed in this study is effective; by detecting drivers’ driving
characteristic capabilities, their stress response capabilities on the road can be
distinguished. This study provides a feasible rating approach for research in the
field of road traffic safety.
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[Objective] To explore whether driving characteristics affect drivers’ stress re-
sponses and behaviors when facing traffic hazard events.

[Methods] This study employed the Vienna Test System (VTS) to assess par-
ticipants in a driving simulation experiment. In the simulation, participants
were required to drive at 60 km/h while encountering stressors at three dis-
tances corresponding to Time-to-Collision (TTC) values: 19.2 m (TTC =1 s),
275 m (TTC = 1.5s), and 35.8 m (TTC = 2 s). A set pair analysis model eval-
uated participants’ stress responses, with evaluation grade ranges determined
by K-means clustering and indicator weights assigned via the entropy weight
method.

[Results] The findings demonstrate that assessing drivers’ stress response ca-
pabilities through driving characteristics is effective. First, across all stress dis-
tances, participants with high driving characteristics exhibited superior stress
responses compared to those with low driving characteristics. Second, at a stress
distance of 19.2 m (TTC = 1 s), the evaluation score for high-characteristic par-
ticipants was two levels higher than for low-characteristic participants, whereas
at other distances the difference was only one level. Low-characteristic par-
ticipants showed greater sensitivity to reductions in stress distance than their
high-characteristic counterparts.

[Limitations] The demographic composition of the study sample was insuffi-
ciently diverse.

[Conclusions] This study validates the rationale for providing drivers with
more than 1 s of TTC in traffic stress events, offering reference values for acci-
dent warning and collision avoidance system design. The proposed mathemati-
cal grading method proves effective, enabling differentiation of drivers’ on-road
stress response capabilities through assessment of their driving characteristics.
This research provides a feasible rating framework for road traffic safety studies.

Keywords: Driving characteristics, Stress response, Set Pair Analysis, Driving
simulation
Classification: U491.2
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Abstract

[Objective] To investigate whether driving characteristics influence drivers’
stress responses and behaviors during traffic hazard events.

This work was supported by the Fujian Provincial Social Science Fund (Project
No. 2021B63).
Corresponding author: Zheng Xinyi, E-mail: zhengrinyi@fzu.edu.cn

[Methods] The Vienna Test System (VTS) was used to evaluate participants
in a driving simulation experiment. Participants drove at 60 km/h while the
distance between the stressor and their vehicle corresponded to three Time-to-
Collision (TTC) scenarios: 19.2 m (TTC =1 s), 27.5 m (TTC = 1.5 s), and
35.8 m (TTC = 2 s). Set pair analysis evaluated stress responses, with K-means
clustering determining evaluation grade ranges and the entropy weight method
establishing indicator weights.

[Results]| Results confirm that judging drivers’stress response ability via driving
characteristics is effective. First, under all stress distances, high-characteristic
participants outperformed low-characteristic participants. Second, at 19.2 m
(TTC =1 s), high-characteristic participants scored two levels higher than low-
characteristic participants, while at other distances the advantage was only one
level. Low-characteristic participants demonstrated heightened sensitivity to
reduced stress distances.

[Limitations] The sample lacked sufficient demographic diversity among driver
characteristics.

[Conclusions] This study substantiates the necessity of providing drivers with
TTC exceeding 1 s during traffic stress events, informing the design of warning
and anti-collision systems. The proposed grading methodology effectively dis-
tinguishes drivers’ stress response capabilities through characteristic assessment,
offering a viable rating approach for road safety research.

Keywords: Driver characteristics, Stress response, Set Pair Analysis, Driving
Simulation Experiment

1 Introduction

Due to the complexity of traffic environments, drivers often fail to avoid traffic
stress events in time (e.g., pedestrians suddenly darting from the roadside, vehi-
cles emerging from sight-restricted intersections), leading to accidents through
erroneous operations. Analysis of accident mechanisms reveals that differences
in stress response capabilities stemming from driver characteristics constitute
a critical factor affecting crash occurrence. Accident proneness theory suggests
that certain individuals differ in physiological and psychological capacities re-
lated to safety personality traits [1,2], while research indicates that drivers’stress
responses decline as the urgency of road stress events increases [3,4]. We posit
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that variations in drivers’ physiological and psychological abilities manifest dif-
ferently across driving behaviors as road environmental stress intensifies.

Scholars worldwide have investigated stress response capabilities across drivers
with different characteristics. For instance, individuals with lower attention
levels exhibit longer perception-reaction times (from lead vehicle brake light il-
lumination to driver’ s foot leaving the accelerator) and brake-movement times
(from foot leaving accelerator to contacting brake) when facing stress events [5].
Novice and experienced drivers show differences in average speed and maximum
brake depth under various stress conditions [6]. Warshawsky-Livne et al. found
that perception-reaction time increased significantly with age and event urgency
across three stress scenarios [3]. Takahashi et al. assessed drivers’ hazard percep-
tion by measuring palm sweat response (PSR), skin potential reflex (SPR), and
steering wheel, accelerator, and brake operation abilities in elderly drivers [7].
Domestic research has focused on identifying indicators characterizing stress re-
sponse capacity, such as the relationship between training frequency and pupil
area change rate in complex road environments [8], and significant differences in
heart rate growth rates across various conflict-induced stress scenarios [9]. How-
ever, studies on stress responses among different driver characteristics remain
relatively scarce domestically.

Nevertheless, definitions and research foci regarding driving characteristics vary
internationally. To clarify the content of driving characteristics, this paper
adopts the S-O-R (Stimulus-Organism-Response) model from cognitive psy-
chology to divide driver behavior into three stages: information perception,
judgment /decision-making, and driving operation [10]. The perception stage
primarily receives external information; the judgment stage involves analysis-
based decision-making; and the operation stage represents actual responses,
specifically steering, braking, and acceleration controls. Accordingly, driving
characteristics are categorized into perceptual, judgmental, and operational
characteristics.

Research on drivers’ perceptual characteristics has long established that among
accidents caused by driver error, perceptual errors account for 50.2%, judg-
ment/decision errors for 38.9%, and operational errors for 10.9% [11]. Tuerker
et al., through questionnaires on driver accident rates in Sweden and Turkey,
found that drivers in low-accident countries perceived speed more accurately
than those in high-accident countries [12]. Novice drivers’ hazard perception cor-
relates with their accident records [13], and hazard perception ability improves
with increased negative emotions [14]. Elderly drivers’ capacity to continuously
receive and process spatiotemporal information from the environment declines,
exposing operational risks (braking, steering, starting, merging, lane-changing)
during emergencies [15]. Regarding judgment characteristics, Wu Fuwei tested
accident-involved and accident-free drivers using a complex reaction test sys-
tem, finding no significant differences in judgment criteria but weaker complex
information processing and executive functions in the accident group [16]. For
operational characteristics, Summala found that time from stressor appearance
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to initial brake pedal contact depended heavily on the traffic scenario [17], and
drivers braked more readily when pedestrians appeared on the right versus left
side [18]. In summary, driving characteristics—particularly perceptual charac-
teristics—significantly impact traffic safety across varying stress scenarios.

Regarding measurement tools, studies have employed questionnaires [14,19] or
testing instruments [16,20-24] to determine driving characteristics, such as risk
perception scales, emotion tests [14], and driving risk attitude scales [19]. Some
research developed custom equipment to test drivers’ complex reactions [16]. No-
tably, the Vienna Test System (VTS) has proven superior for assessing driver
characteristics. KACA G compared three mandatory psychological assessment
systems for professional and license-suspended drivers in Turkey—VTS, ART
2020, and TRAFIKENT—finding VTS’ s six test modules significantly corre-
lated with driving error (violation) counts, with the Concentration Test (COG)
showing predictive value for violations [20]. Deng used VTS Peripheral Percep-
tion (PP) and Visual Reaction (VR) modules to explore gender and experience
differences, revealing no gender differences in PP but experienced drivers outper-
forming novices [21]. Soheil et al. employed COG, Adaptive Traffic Perception
(ATAVT), Reaction Time (RT), and Reactive Stress Tolerance (DT) modules
to measure driving characteristic changes in waterpipe smokers before and af-
ter consumption [22]. Hani Tabai et al. used Sustained Attention (WAFV),
Visual Perception (LVT), and COG tests to evaluate cognitive differences be-
tween train drivers with and without accident histories [23]. Mihai et al. utilized
Safety Assessment Road and Driver Personality Factors Road test groups to as-
sess psychophysical abilities and personality traits required for safe driving [24].

Despite extensive international use of VTS for measuring driving characteris-
tics, comparative evaluations under specific road stress scenarios remain lim-
ited, particularly in domestic research. Therefore, this study employs VTS to
detect participants’ driving characteristic levels, selects groups with distinct dif-
ferences, collects stress response data across varying stress scenarios via driving
simulation, and establishes a mathematical analysis method to evaluate driver
performance based on stress response quality (safety level).

2.1 Participant Recruitment

This experiment recruited 100 licensed drivers for VTS testing. Participants
with one or more years of driving experience comprised 64% of the sample, aged
20-26 years, including 70 males and 30 females, aligning with 2018 Chinese
driver demographic statistics [25]. Based on existing driving simulation research
[22,23,26], 42 participants were selected for the driving simulation experiment.
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2.2 VTS Test Design
(1) VTS Module Selection

As previously established, driver behavior comprises three interrelated and con-
tinuous stages—perception, judgment, and operation—that cannot be simply
separated. Therefore, VTS modules relevant to these three stages were se-
lected to assess driving characteristics. Based on the VTS manual and domes-
tic/international research applications [22-24,27], five test modules were chosen
(Table 1).

Table 1 Driving Characteristic Test Items Battery

Module Content Test Name Assessment Focus

Logical reasoning ability Adaptive Assesses logical reasoning,
Matrices Test attention concentration, and
(AMT) comprehensive judgment [24]

Traffic perception ability =~ Adaptive Traffic Briefly presents traffic
Perception Test images requiring responses;
(ATAVT) evaluates visual observation,

spatial perception, and speed
perception [22,24,28]

Concentration test COG Determines whether
displayed numbers match
any of four previously shown
numbers; tests attention
level [20,22-24]

Reaction ability test RT Requires immediate button
press upon key stimulus
appearance; tests reaction
capability [22,24]

Reactive stress tolerance DT Press corresponding buttons
in response to continuous
visual and auditory stimuli
at three speeds; tests
eye-ear-hand-foot
coordination [20,22,24]

The PR value (percentile rank) quantifies VTS results [22,24,27], representing
the proportion of individuals in the reference group (a representative European
sample) who scored at or below the same level. The sum of PR values across five
modules yields the driver’ s characteristic score, with higher scores indicating
better driving characteristics.
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2.3 Driving Simulation Experiment Design
(1) Experimental Scenario Design

The stress event involved a parked vehicle (stressor) suddenly emerging from
an obscured area ahead of the participant’ s vehicle, traveling at low speed
in the same lane before changing lanes and stopping. Figure 1 illustrates the
experimental scenario containing the stressor.

Driver characteristics (internal factor) and stress distance (external factor) both
influence stress responses. Research indicates that stress distance variations af-
fect heart rate growth and LF values of heart rate variability more substantially
than speed changes [4]. Therefore, this study controlled speed at 60 km/h while
investigating responses across different stress distances. Accounting for the par-
ticipant vehicle’ s front length, distances corresponding to TTC values of 1.0 s,
1.5 s, and 2.0 s were set at 19.2 m, 27.5 m, and 35.8 m, respectively [4].

To prevent psychological expectancy, six potential stress event trigger points
were designed, but only the 2nd, 5th, and 6th locations actually triggered events.
To counteract learning effects across three stress events, three scenarios with
different trigger distance sequences were created: Scenario A (19.2 m, 27.5 m,
35.8 m), Scenario B (27.5 m, 35.8 m, 19.2 m), and Scenario C (35.8 m, 19.2 m,
27.5 m). These scenarios were rotated among participants.

(2) Stress Response Indicators

When encountering stressors, drivers respond laterally via steering and longi-
tudinally via accelerator release or braking. Based on relevant literature [29-
32], accelerator depth, brake speed, and steering wheel angle were selected to
characterize driving behavior. EEG and eye movement indicators representing
physiological /psychological status are listed in Table 2.

Table 2 Stress Response Indices

Indicator Type Indicator Description

EEG (+a)/B Calculated from |, a,
and § wave energies;
indicates alertness
(lower values = lower
alertness) [33-35]

Eye movement Saccade frequency Ratio of target
observations to time;
indicates environmental
familiarity (lower
frequency = greater
familiarity, less
psychological pressure)
(30]
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Indicator Type

Indicator

Description

Eye movement

Driving behavior

Driving behavior

Driving behavior

Pupil area (pixel)

Accelerator depth
(cm)

Brake speed (cm/s)

Steering wheel
angle (°)

Reflects visual
adaptability and physi-
ological /psychological
load; larger pupil area
indicates higher task
load [32]

Accelerator pedal
depth; greater depth
indicates tendency to
maintain or increase
speed

Brake depth divided by
braking time; higher
values indicate more
urgent braking and
more intense stressor
reaction

Angle change per
steering adjustment;
larger values indicate
more intense stress
responses

(3) Experimental Equipment

The experiment was conducted indoors to eliminate weather, lighting, and noise
influences on physiological responses.

1. Driving simulation system: The DSR-1000TS2.0 system enabled
closed-loop indoor simulation, recording multiple driving behavior param-
eters (steering angle, brake/accelerator depth) and vehicle parameters
(speed, acceleration, trajectory deviation).

2. EEG data acquisition: A 32-channel NE wireless EEG system trans-
mitted 24-bit data with 0-250 Hz bandwidth, 500 SPS sampling rate,
24-bit/0.05 V resolution, and <1 Vrms noise (0-250 Hz).

3. Eye movement data acquisition: A Dikablis eye tracker with D-Lab
analysis software tracked and measured eye movement characteristics at
60 Hz frequency with 0.1°-0.3° precision.
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2.4 Experimental Procedure

All 100 recruited participants first completed VTS testing. Based on results,
21 high-characteristic and 21 low-characteristic participants were selected for
driving simulation.

VTS Testing: Participants completed personal information forms (age, driv-
ing experience, annual mileage) and received VTS usage instructions. Testing
duration was approximately 30 minutes.

Driving Simulation: Before formal experiments, participants were informed
of objectives and tasks, emphasizing the 60 km/h speed requirement, and signed
consent forms. Researchers fitted participants with EEG and eye-tracking equip-
ment. Participants practiced 5-10 minutes in non-experimental scenarios to
familiarize themselves with the simulator.

Formal experiments involved loading one scenario (A, B, or C) with approxi-
mately 10 minutes of driving per participant, with each participant driving only
once.

2.5 Data Processing

VTS data (PR values) were directly exported. Eye movement data were ex-
ported via D-Lab. Driving data were automatically generated at 30 ms inter-
vals. EEG data were processed using NIC software and EEG-Lab in MATLAB,
filtering 0.5-40 Hz data (at 500 Hz sampling), re-referencing to the mean, and
performing ICA to remove artifacts.

Two male participants with abnormally low PR values (<3) were excluded. From
the remaining 98 participants, the 21 highest-scoring individuals (18 males, 3
females) formed the high-characteristic group (Group H), while the 21 lowest-
scoring (14 males, 7 females) formed the low-characteristic group (Group L).

Independent samples t-tests on the six driving characteristic indicators revealed
significant differences between groups (Table 3). Levene’ s test for equality of
variances could not reject the null hypothesis of equal variances for any indicator.

Table 3 Independent-Samples T Test of Driving Characteristic Indi-
cators

Driving Characteristic Mean 95% CI 95% CI p-
Indicator Difference (Lower) (Upper) value
Logical reasoning 21.857 0.017%*

(AMT)

Concentration (COG) 13.381 0.012%*

Traffic perception 16.905 0.015%*

(ATAVT)
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Driving Characteristic Mean 95% CI 95% CI p-
Indicator Difference (Lower) (Upper) value
Reaction speed (RT) 0.000**

Movement speed (RT) 0.001**

Reactive stress tolerance 0.000**

(DT)

Note:  p<0.1 (marginally significant), ** p<0.05 (significant), *** p<0.01
(highly significant).*

3.2 Driving Simulation Experiment Results

Two-way repeated measures ANOVA (with three stress distances as the repeated
factor) was performed on each stress response indicator (Table 4). Mauchly’ s
sphericity test indicated that only “pupil area” met the sphericity assumption;
Greenhouse-Geisser corrections were applied to other indicators.

Table 4 Two-Way Repeated Measures Analysis of Stress Response
Indicators

Stress Driving Distance x
Indicator  Distance Characteristic Characteristic

(+a)/B  0.018* 0.009* 0.001*
Saccade

frequency

Pupil 1.776
area

Accelerator

depth

Brake

speed

Steering

angle

Note: b indicates the statistic is an upper bound on F, yielding a lower bound
on significance level.

Results showed significant within-subject effects of stress distance for all indi-
cators (p<0.01). The interaction between stress distance and driving charac-
teristics significantly affected brake speed. Between-subject effects of driving
characteristics were significant for all indicators (p<0.01).

Regarding effect sizes, Ferguson’ s [36] benchmarks for small, medium, and large
effects in social sciences are 0.04, 0.25, and 0.64, respectively. Table 4 shows
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that for stress distance, the variance explained exceeded 0.64 for accelerator
depth, brake speed, steering angle, and pupil area, while ( +«)/f and saccade
frequency fell between 0.25-0.64, indicating substantial practical significance.
For driving characteristic groups, pupil area, accelerator depth, brake speed,
and ( +a)/8 explained 0.25-0.64 of variance, while steering angle and saccade
frequency explained 0.04-0.25, demonstrating varying degrees of practical sig-
nificance.

Overall, Group H outperformed Group L across all indicators. Longer stress dis-
tances yielded safer and more stable physiological, psychological, and behavioral
responses. Specific analyses follow:

1) EEG Indicator: Group L showed higher ( +«)/f values than Group H, in-
dicating higher alertness during stress. Smaller stress distances produced larger
( +a)/p values, reflecting increased alertness under more urgent conditions.

2) Eye Movement Indicators: Group L exhibited higher saccade frequency
than Group H, indicating greater psychological pressure. Saccade frequency
increased at shorter distances, reflecting heightened mental stress. Similarly,
Group L’ s pupil area exceeded Group H’ s, indicating greater mental load, with
pupil area increasing as stress distance decreased.

3) Driving Behavior Indicators: Group H demonstrated greater accelerator
depth than Group L, with depth increasing at longer distances, suggesting that
better driving characteristics or longer reaction time/space enhance accelerator
control and permit higher speeds. Group L showed higher brake speed than
Group H, indicating more urgent braking that intensified at shorter distances.
The significant interaction between characteristics and distance on brake speed
suggests these factors jointly influence braking behavior. For steering angle,
Group L exceeded Group H, showing more intense stress responses that ampli-
fied at shorter distances.

4 Stress Response Evaluation Based on Set Pair Analysis

To comprehensively represent stress responses of high- and low-characteristic
groups across different distances, this study introduced set pair analysis. Build-
ing on six indicators, K-means clustering determined evaluation grade ranges
while entropy weighting established indicator weights.

4.1 K-Means Clustering for Evaluation Grade Ranges

Evaluation criteria must be established before assessment. As a representa-
tive unsupervised clustering algorithm, K-means automatically groups similar
samples [37]. This study used SPSS to cluster samples into five categories, de-
termining five-grade ranges for six indicators based on cluster centers.
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Cluster centers for each indicator were standardized and distributed as shown
in Figure 3. Saccade frequency, pupil area, and brake speed showed ordinal
relationships with categories. Accelerator depth showed an inverse ordinal re-
lationship. Although category 4 cluster centers for ( +«)/8 and steering angle
exceeded category 5, they generally followed ordinal patterns.

Figure 3 Standardized cluster center values for indicators

Categories 1-5 corresponded to stress levels from highest to lowest. Table 5
presents the resulting grade ranges, where Grade 1 represents the highest eval-
uation level and Grade 5 the lowest.

Table 5 Indicators’ Range of Five Levels

Indicator Grade 1 Grade 2 Grade 3 Grade 4 Grade 5

(+a)/B 0.54-2.19  2.20-2.98  2.99-4.10  4.11-5.14  5.15-11.52

Saccade 0.10-0.21 0.22-0.27  0.27-0.34  0.35-0.43  0.44-1.06

frequency

Pupil area 878.65- 1009.63- 1201.53- 1396.92- 1573.16-
1009 1201.5 1396.92 1573.16 1683.

Accelerator 1.97-3.24 1.52-1.96  0.96-1.51 0.64-0.95  0.13-0.63

depth

Brake speed  0.56-1.10 1.11-1.71 1.72-2.65  2.66-3.23  3.24-7.36

Steering 0.81-1.44 1.45-1.73 1.74-2.08  2.09-7.84

angle

4.2 Entropy Weight Method for Indicator Weights [38,39]

The entropy weight method is an objective weighting approach that determines
weights based on information content. The procedure is as follows:

1) Indicator normalization: Due to differing dimensions and magnitudes
among EEG, eye movement, and driving indicators, data were standardized
using formulas (1) and (2) for benefit-type and cost-type indicators, respectively.

v — Y — min(u,) 1)

Y max(u;) — min(u,)

_ max(r;) — @)

max(z;) — min(x,)

Vi

where u,; is the value of indicator j for sample i, v;; is the standardized value,
max(u;) is the maximum value, and min(u;) is the minimum value.

2) Calculate characteristic proportion p;; for sample i:
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Zi:1 Uij

3) Calculate information entropy e; for indicator j:

bi; =

€; = ! ipijln(pij> (4)

Inm
7

4) Calculate entropy weight w;:

The greater the variation in indicator j across evaluated objects, the more in-
formation it conveys. When all values for indicator j are equal, e; = 1. The
difference coefficient d; = 1 — e; is defined, where larger d; indicates greater
information provision and higher weight. The entropy weight is:

W= o (5)
Zkzl dk

Resulting weights are shown in Table 6.

Table 6 Indicator Weight Obtained by Entropy Method

Indicator Weight
(+a)/B

Saccade frequency
Pupil area
Accelerator depth
Brake speed
Steering angle

4.3 Set Pair Analysis Evaluation Model

Set pair analysis (SPA) treats deterministic and uncertain relationships between
studied objects as a deterministic-uncertain system. SPA has been widely ap-
plied in computer science [40], biochemistry [41], transportation [42,43], mate-
rials science [44], engineering [45], physics/astronomy [46], and environmental
science [47].

SPA evaluation forms a pair (A, B) from two interrelated sets. If both sets be-
long to the same evaluation grade, they exhibit identity; if grades are separated,
they show opposition; if adjacent, they show difference. Analyzing identity,
difference, and opposition establishes the connection degree:

_S+F_+P,_ +bitcj (6)
p=ytyityi=atbitc
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where p is the connection degree, N is the total feature count, S is identical
features, F' is differential features, and P is opposite features. i is the difference
coefficient, j is the opposition coefficient, a is identity degree, b is difference
degree, and c is opposition degree, with a +b+c = 1.

Further subdividing difference and opposition degrees yields a five-element con-
nection degree (7). For the evaluated object indicator set A = [zq, 2y, ..., T{4]
and five-grade standard set B = [s; ~ $1,8; ~ Sg,...,84 ~ 85|, for cost-type
indicators, when z, falls within grade range s;,_; ~ s;, a = 1. When z; falls
in adjacent grades, if z; < s;_; it is considered superior difference (denoted
by); if x; > s it is inferior difference (by). When z; falls in separated grades,
if 2; < sj_5 it is superior opposition (¢;); if z; > s, it is inferior opposition

(ca).

Thus, equation (6) becomes [47]:

p=a+by;+by +cjtcy (7)

For cost-type indicators, the connection degree vector u,(k) for sample i’ s indi-
cator j at grade k is calculated using expression (8). For benefit-type indicators
(accelerator depth), the domain endpoints in (8) are reversed.

The comprehensive connection degree vector p is calculated by combining in-
dicator weights with grade-specific connection degrees using formula (9). SPA
defines the set pair potential as the ratio of identity to opposition degree, ex-
tended to generalized set pair potential [48] in equation (10).

Evaluation grades are typically determined by the maximum set pair potential
principle (11). Final set pair potentials for both groups across three distances
appear in Table 7.

Table 7 Set Pair Analysis Evaluation Results

Stress Distance High Characteristic ~Low Characteristic

192 m 1.504 (Grade 2)
27.5m
35.8 m

Results show that high-characteristic participants outperformed low-
characteristic participants across all distances, confirming that driving
characteristics can predict stress response capability. When distance decreased
from 27.5 m to 19.2 m, high-characteristic participants dropped from Grade 2
to Grade 3, while low-characteristic participants fell from Grade 3 to Grade 5,
demonstrating greater sensitivity to distance reduction among low-characteristic
drivers. When distance decreased from 35.8 m to 27.5 m, both groups dropped
one grade, consistent with research showing no significant psychological load
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difference between 35.8 m (TTC=2s) and 27.5 m (TTC=1.5s), but significant
differences between 27.5 m and 19.2 m (TTC=1s) [4]. This highlights the
critical importance of TTC exceeding 1 s.

Individual sample assessments were calculated for 216 samples (2 groups x 3 dis-
tances). Figure 4 illustrates the distribution: for low-characteristic participants
at 19.2 m, 6 were rated Grade 3, 7 Grade 4, and 8 Grade 5 (with 8/17 of all Grade
5 ratings belonging to this subgroup). Grade 3 was most common across con-
ditions, indicating intermediate stress response levels. Grade 1 primarily came
from high-characteristic participants at 27.5 m and 35.8 m, with a few from
low-characteristic participants at 35.8 m, suggesting some low-characteristic in-
dividuals performed excellently with sufficient distance. However, most low-
characteristic participants at 35.8 m received Grade 3, with Grade 1 counts
matching Grades 4 and 5, indicating instability even at longer distances. High-
characteristic participants showed stable performance (Grades 1-3) at 27.5 m
and 35.8 m, with only Grade 3-5 ratings at 19.2 m. Both groups exhibited evenly
distributed ratings (Grades 3-5) at 19.2 m, indicating poor stress responses at
TTC =1s.

Figure 4 Set pair analysis grade distribution for two driving characteristic
groups across three stress distances

5 Conclusion and Discussion

1. VTS testing successfully screened 21 high-characteristic and 21 low-
characteristic participants, with independent samples t-tests confirming
significant differences across all indicators.

2. Six indicators—EEG ( +«)/8, pupil area, saccade frequency, accelerator
depth, brake speed, and steering angle—were analyzed across three
stress distances. Significant differences emerged between groups and
across distances, with high-characteristic participants outperforming low-
characteristic participants and longer distances producing superior values.
These results validate the hypotheses proposed in the introduction.

3. Set pair analysis revealed that high-characteristic participants outper-
formed low-characteristic participants at all distances, with performance
improving at longer distances. Notably, low-characteristic participants
at 35.8 m outperformed high-characteristic participants at 19.2 m. The
two-grade advantage for high-characteristic participants at 19.2 m ver-
sus one-grade advantages at other distances underscores low-characteristic
participants’ heightened sensitivity to distance reduction, emphasizing the
need for characteristic improvement.

4. The significant interaction between characteristics and distance on brake
speed suggests distance reduction impacts low-characteristic participants
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more severely. Better characteristics or longer reaction time/space corre-
late with higher speeds (greater accelerator depth), likely due to superior
accelerator control.

5. The one-grade decline for both groups when distance decreased from 35.8
m to 27.5 m aligns with findings of no significant psychological load dif-
ference between these distances but significant differences between 27.5 m
and 19.2 m [4]. This confirms TTC > 1 s as a critical threshold for safe
stress responses.

6. The maximum set pair potential principle, similar to fuzzy evaluation’
s maximum membership principle, overemphasizes extreme values while
losing intermediate information. For instance, a sample with potentials
[1.1, 2.1, 1.4, 2.0, 2.2] would be rated Grade 5 despite Grades 3-5 being
similar. Alternative confidence criteria require membership >0.5, which
would prevent Grade 1 ratings (e.g., sample [0.45, 0.7, 0.16, 0.16, 0.16]
would be Grade 2, not Grade 1). Future research should develop a method
combining maximum potential with confidence criteria.

7. This study established the relationship between VTS-assessed driving char-
acteristics and stress responses but did not investigate methods for improv-
ing characteristics through VTS training—a crucial direction for future
research.
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