
AI translation ・View original & related papers at
chinarxiv.org/items/chinaxiv-202203.00029

A Creativity Survey of Distributed Database Sys-
tem
Authors: JIAHAO FU, WEI LI

Date: 2022-03-10T18:16:36+00:00

Abstract
Distributed database systems are widely used due to the rapid development of
the Internet. With ever-increasing demands, boosting performance and mini-
mizing resource and data contention have become critical considerations. An
effective distributed physical design, which determines data placement, replica-
tion, and partitioning strategies, can significantly improve system performance.
This paper classifies the evolution of physical design based on Michael’s work
and its references, according to research problems, research methodologies, and
measurement approaches. Finally, we propose several directions for future re-
search.

Full Text
Preamble
A Survey of Distributed Database Systems

JIAHAO FU
Institute of Computing Technology, Chinese Academy of Sciences
fujiahao211@mails.ucas.ac.cn

WEI LI
Institute of Computing Technology, Chinese Academy of Sciences
liwei@ict.ac.cn

Abstract: Distributed database systems have become widely used due to the
rapid development of the Internet. With ever-increasing demands, improving
performance and minimizing resource and data contention have become critical
considerations. An effective distributed physical design, which determines data
placement, replication, and partitioning strategies, can significantly enhance sys-
tem performance. This paper classifies the evolution of physical design based on

chinarxiv.org/items/chinaxiv-202203.00029 Machine Translation

https://chinarxiv.org/items/chinaxiv-202203.00029
https://chinarxiv.org/items/chinaxiv-202203.00029


Michael’s work and related references, examining research problems, method-
ologies, and measurement approaches. Finally, we propose several directions for
future research.

Keywords: Distributed Database System

1 Introduction
As traditional database technology matures alongside rapid advancements in
computer networking and expanding application scopes, database applications
have become widely deployed across networked environments. However, cen-
tralized database systems exhibit several shortcomings: data is naturally dis-
tributed across networks based on practical needs, yet centralized processing in-
curs substantial communication overhead; application concentration on a single
computer creates a single point of failure that affects the entire system, yield-
ing low reliability; and system scale and configuration lack flexibility, resulting
in poor scalability. Consequently, database systems with distributed charac-
teristics have attracted significant research attention. Distributed databases
represent the convergence of database and network technologies, forming an
important branch within the database field. These systems store and man-
age massive datasets, replicate and partition data, and distribute transactions
across multiple nodes. The selection of data replication and partitioning solu-
tions through distributed physical design can substantially boost performance
while minimizing resource and data contention. We conducted a comprehensive
survey of distributed database systems to summarize existing work and identify
promising future research directions.

The remainder of this paper is organized as follows. Section 2 presents our
classification of database system research objects. Section 3 introduces the
classification of research methods. Section 4 compares experimental analyses
across related literature. Section 5 discusses future research opportunities, and
Section 6 concludes the paper.

2 Classification of Research Objects
The physical design of distributed database systems is closely related to data
control. Additionally, certain data management tasks remain relevant in central-
ized database systems. Therefore, this section employs two independent criteria
to classify research objects: (1) Database System type (Distributed or Cen-
tralized), representing the maximum dimension of classification, and (2) Data
Management approach (Partition, Replication, Master, or Index). Some meth-
ods from centralized systems can be adapted for distributed systems, creating
intersections between these categories.

In distributed systems, these four data management approaches are intuitive:
partitioning distributes data fragments across different databases; replication
stores identical data simultaneously in multiple databases; mastering provides

chinarxiv.org/items/chinaxiv-202203.00029 Machine Translation

https://chinarxiv.org/items/chinaxiv-202203.00029


authoritative data management to resolve or prevent conflicts; and indexing
accelerates data retrieval. These techniques also apply to backup and recovery
in centralized systems and other use cases.

Based on these criteria, we present the classification in Table 1.

Table 1: Classification of Research Objects

Database System Partition Replication Master Index
Distributed Type I:

[1][4][7][9][11][13][14][15][16][17]
Type II:
[1][3][4][5][6][8][10][12][18][19]

Type III:
[1][2][3]

Type
IV: [11]

Centralized Type V: [11] Type VI: [5][6] Type VII:
—

Type
VIII:
[11]

Type Definitions: - Type I: Data partitioning in distributed database sys-
tems - Type II: Data replication in distributed database systems - Type III:
Data mastering in distributed database systems - Type IV: Data indexing
in distributed database systems - Type V: Data partitioning in centralized
database systems - Type VI: Data replication in centralized database systems
- Type VII: Data mastering in centralized database systems - Type VIII:
Data indexing in centralized database systems

2.3 Explanation of Different Types
Type I (Distributed Partitioning): References [4][7][9][13][14][15][16][17] ad-
dress distributed partitioning. Reference [4] uses workload to determine replica-
tion strategy. Reference [7] focuses on fine-grained configuration for partitioned
main memory databases. Reference [9] considers distributed joins. Reference
[13] proposes query-centric partitioning for partially replicated systems. Refer-
ence [14] introduces partitioning for general database schemas. Reference [15]
targets ad-hoc query workloads. Reference [16] addresses distributed transaction
processing systems. Reference [17] examines shared-everything OLTP systems.

Type II (Distributed Replication): References [3][4][8][10][12][18][19] cover
distributed replication. Reference [3] focuses on partitioned snapshot isolation
databases. Reference [4] addresses both replication and partitioning based on
workload. Reference [8] identifies dangers of replication and proposes solutions.
Reference [10] addresses transaction scaling. Reference [12] works with partially
replicated databases. Reference [18] provides a lower bound on dynamic repli-
cation algorithm performance. Reference [19] presents an update-everywhere
replication approach for PostgreSQL based on snapshot isolation.

Type III (Distributed Mastering): References [2][3] address distributed
mastering. Reference [2] proposes DynaMast, which dynamically transfers data

chinarxiv.org/items/chinaxiv-202203.00029 Machine Translation

https://chinarxiv.org/items/chinaxiv-202203.00029


mastership among sites using a lightweight metadata-based protocol. Reference
[3] proposes multi-master replication.

Types I, II, and III (Combined): Reference [1] uses historical workload to
train a cost model that makes compound decisions on partitioning, replication,
and mastering.

Types I, IV, V, and VIII (Partitioning and Indexing): Reference [11] fo-
cuses on database partitioning and indexing, proposing an optimization method
that improves query time based on user query history patterns. It uses virtual
partitioning to access raw data and employs linear programming and greedy
algorithms to optimize the cost model.

Types II and VI (Replication): References [5][6] propose lazy database
replication algorithms. Reference [5] guarantees ordering, while Reference [6]
guarantees snapshot isolation.

Type VII (Centralized Mastering): No references address this category.
In centralized systems, identical data across databases is considered backup, so
data conflicts do not occur. The primary concern is enabling backup databases
during fatal errors, which has received minimal research attention.

3 Classification of Research Methods
Database systems require configuration before deployment. Machine learning
can sometimes generate superior configurations automatically. This section clas-
sifies research methods using two criteria: (1) Use of Machine Learning
Model (Yes or No), and (2) Configuration Method (Dynamic or Static).
While static configuration is straightforward, dynamic configuration can better
adapt to non-static systems.

Table 2: Classification of Research Methods

Method of Configuration Using ML Model Not Using ML Model
Dynamic Type I: [1] Type II:

[2][4][7][9][11][13][14][15][16][17][18]
Static Type III: — Type IV:

[3][5][6][8][10][12][19]

Type Definitions: - Type I: Uses machine learning models with dynamic
configuration - Type II: Does not use machine learning models but employs
dynamic configuration - Type III: Uses machine learning models with static
configuration - Type IV: Does not use machine learning models and uses static
configuration

Type I: Reference [1] uses linear regression models that consume input vectors
and output scalar predictions of operation latency.

chinarxiv.org/items/chinaxiv-202203.00029 Machine Translation

https://chinarxiv.org/items/chinaxiv-202203.00029


Type II: References [2][4][7][9][11][13][14][15][16][17][18] employ dynamic con-
figuration without ML. Reference [2] supports adaptive dynamic mastering with
multi-mastering capabilities. Reference [4] proposes a graph-based strategy or-
ganized around databases and workload. Reference [7] enables fine-grained live
reconfiguration without server shutdown. Reference [9] proposes adaptive par-
titioning to reduce distributed join costs. Reference [11] optimizes query time
based on user query history patterns using virtual partitioning, linear program-
ming, and greedy algorithms. Reference [13] proposes a workload-aware, scal-
able analytical model using linear programming. Reference [14] uses an elastic
algorithm based on Heat Graph. Reference [15] creates and maintains a parti-
tion tree based on user queries for adaptive, robust partitioning. Reference [16]
proposes the E-Store elastic partitioning framework with E-Monitor for hotspot
tracking and E-Planner for heuristic data movement. Reference [17] uses logi-
cal partitioning and MBR-Trees based on workload. Reference [18] provides a
performance lower bound for any dynamic replication algorithm.

Type III: No references belong to this category.

Type IV: References [3][5][6][8][10][12][19] downplay or do not focus on
database configuration.

4 Review of Experimental Analysis
This section classifies evaluation metrics and system parameters, as shown in
Table 3. The table categorizes experimental analyses by metrics and parameters,
revealing that most references compare throughput, delay, and response time.

Table 3: Experimental Metrics and Parameters

Category Subcategory References
Parameters Hardware [1][3][5][6][10][12][13][17]

Software [1][2][3][4][5][6][7][10][12][13][14][16][17][19]
Metrics Throughput [1][3][5][6][10][12][13][17]

Delay [12]
Response Time [1][2][3][5][6][7][10][12][13][14][16]
Other [4][8][9][10][11][13][14][15][17][18][19]

Metric Definitions: - Throughput: The number of database transactions
per unit time. The formula is:
Throughput = Total Transaction Number - Delay: Request response time
within the database system - Response Time: Time from when a client re-
quest begins until it receives a response - Other Metrics: Include network
delay, distributed transaction ratio, cost, etc.

System Parameters: - Hardware: Experimental hardware environment,
such as network topology, number of clients or servers - Software: Experimen-

chinarxiv.org/items/chinaxiv-202203.00029 Machine Translation

https://chinarxiv.org/items/chinaxiv-202203.00029


tal software configuration, such as configuration variables, algorithm parameters,
or experimental datasets

Experimental Comparisons: Most studies evaluate throughput and response
time across varying numbers of clients. Reference [1] additionally assesses model
accuracy and cost. Reference [2] compares throughput and delay across differ-
ent client counts. Reference [3] measures throughput, additional delay, and
read-only transaction response time. Reference [4] examines distributed trans-
action ratios across partition numbers and graph sizes. References [5][6] evaluate
throughput and response times for read-only and read-write transactions under
different client loads. Reference [7] compares throughput and delay during and
after reconfiguration. Reference [8] contains no experiments. Reference [9] com-
pares running time and buffer sizes across different data volumes. Reference
[10] measures throughput and algorithm state transition costs. Reference [11]
compares memory costs and query times for different queries. Reference [12]
evaluates response time, transaction commit ratio, and local transaction ratio.
Reference [13] compares throughput and average response time across varying
numbers of servers, requests, and backends. Reference [14] compares through-
put, delay, and distributed transaction ratio. Reference [15] measures upfront
overhead and first query runtime. Reference [16] compares throughput and de-
lay across various algorithms. Reference [17] compares throughput, transaction
execution time, and algorithm time/space overhead. Reference [18] compares
average communication cost savings across different read/write modes. Refer-
ence [19] compares response time, throughput, replica count, and replication
cost.

5 Discussion and Suggestion
This survey identifies several underexplored areas in distributed database sys-
tems that merit future research attention:

1. Static Configuration via Machine Learning: While dynamic configu-
ration has been widely studied, using machine learning models to generate
optimal static configurations as initial system states remains largely unex-
plored. Given the rapid advancement of AI, ML models could help make
complex configuration decisions more efficiently.

2. Dynamic Index Management: Database indexes directly impact query
execution speed, but their effectiveness after numerous update transac-
tions is uncertain. Investigating whether dynamic index modification can
accelerate queries in such scenarios represents a valuable research direc-
tion.

6 Conclusions
Distributed database systems offer substantial opportunities for future improve-
ment. This survey builds upon M. Abebe’s work and related references to

chinarxiv.org/items/chinaxiv-202203.00029 Machine Translation

https://chinarxiv.org/items/chinaxiv-202203.00029


classify research objects, methods, and metrics into distinct categories. While
some areas have been extensively studied, others remain underexplored or un-
dervalued. Our classification reveals promising research directions with strong
potential for impact.

References
[1] M. Abebe, B. Glasbergen, and K. Daudjee, MorphoSys: automatic physical
design metamorphosis for distributed database systems, VLDB, 2021.
[2] M. Abebe, B. Glasbergen, and K. Daudjee. DynaMast: Adaptive dynamic
mastering for replicated systems. In IEEE 36th International Conference on
Data Engineering (ICDE), pages 1381–1392. IEEE, 2020.
[3] P. Chairunnanda, K. Daudjee, and M. T. Ozsu. Confluxdb: Multi-master
replication for partitioned snapshot isolation databases. PVLDB, 7(11):948–
958, 2014.
[4] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: a workload-driven
approach to database replication and partitioning. PVLDB, 3(1-2):48–57, 2010.
[5] K. Daudjee and K. Salem. Lazy database replication with ordering guar-
antees. In IEEE 20th International Conference on Data Engineering (ICDE),
pages 424–435. IEEE, 2004.
[6] K. Daudjee and K. Salem. Lazy database replication with snapshot isolation.
In Proceedings of the 32nd International Conference on Very Large Data Bases
(VLDB), pages 715–726, 2006.
[7] A. J. Elmore, V. Arora, R. Taft, A. Pavlo, D. Agrawal, and A. El Ab-
badi. Squall: Fine-grained live reconfiguration for partitioned main memory
databases. In Proceedings of the 2015 ACM International Conference on Man-
agement of Data (SIGMOD), pages 299–313. ACM, 2015.
[8] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication
and a solution. ACM SIGMOD Record, 25(2):173–182, 1996.
[9] Y. Lu, A. Shanbhag, A. Jindal, and S. Madden. Adaptdb: adaptive parti-
tioning for distributed joins. PVLDB, 10(5):589–600, 2017.
[10] Y. Lu, X. Yu, and S. Madden. Star: Scaling transactions through asym-
metric replication. PVLDB, 12(11):1316–1329, 2019.
[11] M. Olma, M. Karpathiotakis, I. Alagiannis, M. Athanassoulis, and A. Aila-
maki. Slalom: Coasting through raw data via adaptive partitioning and index-
ing. PVLDB, 10(10):1106–1117, 2017.
[12] V. Padhye, G. Rajappan, and A. Tripathi. Transaction management using
causal snapshot isolation in partially replicated databases. In IEEE 33rd Inter-
national Symposium on Reliable Distributed Systems (SRDS), pages 105–114.
IEEE, 2014.
[13] T. Rabl and H.-A. Jacobsen. Query centric partitioning and allocation for
partially replicated database systems. In Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data (SIGMOD), pages 315–330. ACM,
2017.
[14] M. Serafini, R. Taft, A. J. Elmore, A. Pavlo, A. Aboulnaga, and M. Stone-
braker. Clay: fine-grained adaptive partitioning for general database schemas.

chinarxiv.org/items/chinaxiv-202203.00029 Machine Translation

https://chinarxiv.org/items/chinaxiv-202203.00029


PVLDB, 10(4):445–456, 2016.
[15] A. Shanbhag, A. Jindal, S. Madden, J. Quiane, and A. J. Elmore. A robust
partitioning scheme for ad-hoc query workloads. In Proceedings of the 2017
Symposium on Cloud Computing (SoCC), pages 229–241. ACM, 2017.
[16] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore, A. Aboulnaga,
A. Pavlo, and M. Stonebraker. E-store: Fine-grained elastic partitioning for
distributed transaction processing systems. PVLDB, 8(3):245–256, 2014.
[17] P. Tözün, I. Pandis, R. Johnson, and A. Ailamaki. Scalable and dy-
namically balanced shared-everything oltp with physiological partitioning. The
VLDB Journal—The International Journal on Very Large Data Bases (VLDBJ),
22(2):151–175, 2013.
[18] O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data replication algo-
rithm. ACM Transactions on Database Systems (TODS), 22(2):255–314, 1997.
[19] S. Wu and B. Kemme. Postgres-r (si): Combining replica control with
concurrency control based on snapshot isolation. In IEEE 21st International
Conference on Data Engineering (ICDE), pages 422–433. IEEE, 2005.

Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv —Machine translation. Verify with original.

chinarxiv.org/items/chinaxiv-202203.00029 Machine Translation

https://chinarxiv.org/items/chinaxiv-202203.00029

	A Creativity Survey of Distributed Database System
	Abstract
	Full Text
	Preamble
	1 Introduction
	2 Classification of Research Objects
	Table 1: Classification of Research Objects

	2.3 Explanation of Different Types
	3 Classification of Research Methods
	Table 2: Classification of Research Methods

	4 Review of Experimental Analysis
	Table 3: Experimental Metrics and Parameters

	5 Discussion and Suggestion
	6 Conclusions
	References


