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Abstract
During the first two decades of the 21st century, domestic methodological re-
search on Structural Equation Modeling (SEM) primarily encompassed five
themes: model development, parameter estimation, model evaluation, mea-
surement invariance, and special data processing, with particularly substan-
tial achievements in model development (i.e., various SEM variants). For each
theme, the development and achievements of methodological research were sys-
tematically summarized based on a brief introduction of background knowledge.
Finally, the progress of international methodological research on SEM and fu-
ture research directions were also discussed.
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In the first two decades of the twenty-first century, methodological research
on structural equation models (SEM) in China’s mainland has primarily in-
volved five themes: model development, parameter estimation, model evalua-
tion, measurement invariance, and special data processing, with particularly
abundant achievements in model development (i.e., various SEM variations).
For each theme, we systematically summarize the development and achieve-
ments of methodological research based on a brief overview of background knowl-
edge. Finally, we also discuss recent progress in foreign methodological research
on SEM and future research directions.

Keywords: structural equation model; model development; parameter estima-
tion; model evaluation; measurement invariance

Structural equation model (SEM) represents a generalization of regression mod-
els and offers numerous advantages that regression models lack. SEM can si-
multaneously handle multiple independent and dependent variables, meeting the
increasingly complex demands of theoretical models in social science research.
It can analyze both observed and latent variables, aligning with the inherent
nature of variables in social science research. SEM allows independent variables
to contain measurement error, yielding more precise parameter estimates, and
provides a rich array of fit indices for model evaluation. These advantages have
established SEM as an important statistical method in social science research.
The earliest domestic SEM methodological research in China can be traced to
Zhang Jianping’s (1993) review article on SEM. The publication of the first
domestic SEM monograph by Hou Jietai et al. (2004) greatly promoted the
dissemination and application of SEM in China.

Since the beginning of the new century, domestic SEM methodological research
in China has made substantial progress and produced abundant achievements.
Using the full-text database of China National Knowledge Infrastructure (CNKI,
https://www.cnki.net/) as the data source, with publication years set from 2001
to 2020, and keywords including structural equation, latent variable, hidden vari-
able, structural model, measurement model, confirmatory factor analysis, con-
firmatory factor analysis, linear structural relationship, covariance structure,
and covariance matrix, we screened and obtained 192 SEM papers published
in journals. The distribution by discipline and publication year is shown in
Table 1. Articles focusing on introductory SEM knowledge, current status of
disciplinary applications, or primarily application-oriented were excluded. Re-
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and Social Science Planning Project (Youth Project) (GD21YXL04), National
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ular Institutions of Higher Education Innovation Team Project (Humanities and
Social Sciences) (2019WCXTD005), and Guangdong Provincial Education Sci-
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Table 1 Frequency distribution of SEM methodological papers published in
domestic journals by discipline from 2001 to 2020 (sorted by number of publi-
cations)

2001-2005 | 2006-2010 | 2011-2015 | 2016-2020

Note: Other disciplines include systems science (7 papers), management (6),
mathematics (4), physical education (3), informatics (3), education (3), sociol-
ogy (2), biology (1), computer science (1), and linguistics (1). Comprehensive
journals are primarily university journals. The figure includes 29 papers on reli-
ability calculation based on SEM and mediation-moderation methods, which are
reviewed in separate articles (see Fang et al., 2022; Wen, Fang, Xie et al., 2022;
Wen, Fang, Chen et al., 2022) and are only counted here without appearing in
the main text.

In terms of disciplines, 13 different fields have published SEM methodological
research, with psychology publishing the most, followed by medicine and statis-
tics. Regarding publication years, there were 18 papers from 2001-2005, 50
from 2006-2010, 68 from 2011-2015, and 56 from 2016-2020. SEM methodolog-
ical research has generally shown an upward trend, with 2011-2015 being the
peak period. This trend is consistent with the development of psychometric
methodology research in China (Wen et al., 2021).

Articles were classified according to the SEM research themes they addressed.
Themes discussed in 10 or more articles were grouped into categories; otherwise,
they were classified as “other.”Based on this, domestic SEM methodological
research papers can be divided into five themes: model development (69 papers),
parameter estimation (38 papers), model evaluation (17 papers), measurement
invariance (15 papers), special data processing (10 papers), and other topics
(43 papers). This classification differs slightly from that of Wen et al. (2021)
because this article is not limited to papers published in psychology journals.
This paper summarizes the progress of domestic SEM methodological research
in the 20 years of the new century (2001-2020) and identifies frontier topics in
this field by comparing them with recent foreign SEM methodological studies.

2. Development of Structural Equation Models
Structural equation models consist of measurement models and structural mod-
els. The measurement model reflects the relationship between latent variables
and their indicators; when used alone, it becomes confirmatory factor analysis
(CFA). The structural model reflects the influence relationships among (latent)
variables. If the latent variables in the structural model are replaced by mean
or total scores of measurement indicators for analysis, it becomes path analysis.
In recent years, SEM has developed numerous new variations. In terms of mea-
surement models, these mainly include bifactor models, exploratory structural
equation modeling, specially designed measurement models (random intercept
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factor analysis model, fixed-links model, and Thurstone model), and formative
measurement models. In terms of structural models, the primary development is
the actor-partner interdependence model. For full models (i.e., complete SEM
containing both measurement and structural models), the main development
involves SEM with item parceling (i.e., item aggregation). Additionally, devel-
opments in SEM for group heterogeneity research and longitudinal research are
also noteworthy.

2.1.1 Bifactor Model

In traditional CFA, a questionnaire item has non-zero loading on only one factor.
The bifactor model allows questionnaire items to additionally load on a global
factor based on a general multi-factor CFA model (Gu et al., 2014). The global
factor can be a trait factor (which can be used to explore and verify higher-order
factor structures, calculate CFA-based reliability, and analyze relationships be-
tween various factors and criterion variables) or a method factor (which can be
used to test common method bias).

There is a nested relationship between bifactor models and higher-order factor
models. Any higher-order factor model can be converted into a bifactor model,
but only bifactor models satisfying proportional constraints (i.e., the ratio of
global factor loadings to local factor loadings is constant within each dimension)
can be converted into higher-order factor models (Gu et al., 2014). Simula-
tion studies have found that for special bifactor models satisfying proportional
constraints, their predictive accuracy for latent criterion variables is inferior to
that of higher-order factor models (Xu et al., 2017). However, in more general
cases that do not satisfy proportional constraints, using bifactor models for pre-
dictive validity analysis yields better model fit, statistical power, and accuracy
of validity coefficient estimation than higher-order factor models (Wen et al.,
2019).

2.1.2 Exploratory Structural Equation Modeling

Traditional CFA models are typical independent cluster models where cross-
factor loadings of questionnaire items are fixed at zero, which may artificially
inflate factor correlations and often prevents CFA from fitting factor structures
obtained from exploratory factor analysis. Exploratory structural equation mod-
eling (ESEM) effectively overcomes these limitations. ESEM allows cross-factor
loadings to be non-zero based on CFA, more realistically reflecting factor struc-
tures while achieving better model fit. Mai and Wen (2013) introduced the
principles of ESEM in detail, compared its similarities and differences with ex-
ploratory factor analysis and CFA, and provided recommendations for using
ESEM. Notably, if Bayesian estimation with special priors is used for parame-
ter estimation, not only can cross-factor loading restrictions be relaxed like in
ESEM, but residual correlation restrictions can also be more flexibly relaxed
(Muthén & Asparouhov, 2012).
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2.1.3 Specially Designed Measurement Models

Random Intercept Factor Analysis Model. The random intercept factor
analysis model adds a latent intercept factor to the general CFA model. The
latent intercept factor varies between subjects but not between items (i.e., the
latent intercept factor loadings are fixed as constants across all items), thereby
reflecting certain stable traits of subjects (such as social desirability or acqui-
escence bias) and can be used to explain and control for item wording effects.
Research has found that compared with bifactor models, the random intercept
factor analysis model helps increase the proportion of trait variance in total
questionnaire score variance, providing better structural validity for question-
naires under conditions where item wording effects exist, with trait variance
exceeding method variance (Wei et al., 2016).

Fixed-Links Model. The fixed-links model is specifically designed for ex-
perimental research, with the main function of separating target factors from
irrelevant factors in experiments to make measurement of experimental target
concepts more accurate. Latent variables consist of one target factor and sev-
eral non-target factors. Factor loadings are fixed, and cross-factor loadings
are allowed. Target factor loadings are specified based on existing theoretical
knowledge and experience, while non-target factor loadings are uniformly set as
a constant. Model evaluation relies not only on fit indices but also on target
factor variance. Significant target factor variance indicates that the psycholog-
ical process represented by the latent variable is necessary for task completion
(Ren et al., 2017).

Thurstone Model. Paired comparison tasks and ranking tasks are common in
social science research. Examples of paired comparison tasks include choosing
the preferred face from two presented face pictures, while ranking tasks include
ordering three face pictures by preference. Data generated from such tasks
are ordinal and do not satisfy the basic assumptions of classical test theory
(Wang et al., 2014), making them better analyzed with specialized models such
as the Thurstone model. In this model, latent variables represent options in
comparison or ranking tasks, while measurement indicators represent subjects’
preference choices for the option versus other options. If subjects prefer the
current option, the factor loading is fixed at 1; otherwise, it is -1. For ranking
tasks, measurement indicator residuals are set to zero. The advantage of this
model is that it can simultaneously obtain detailed information about mean
differences among task options and individual differences among subjects, detect
subtle option differences, and avoid social desirability effects (Song & Liu, 2016).

2.1.4 Formative Measurement Model

The formative measurement model (FM) represents a special form of measure-
ment model. The main differences between FM and traditional measurement
models (also called reflective measurement models, RM) are (Jia & Bao, 2009):
(1) In RM, factors influence measurement indicators, whereas in FM, the op-
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posite occurs—factors are constructed from measurement indicators; (2) RM
requires high internal consistency among measurement indicators that are in-
terchangeable, while FM measurement indicators can be uncorrelated or even
negatively correlated. For FM, what matters more is that measurement indi-
cators cover all aspects of the construct, and RM reliability, validity, and fit
evaluation indices are often not applicable to FM; (3) In RM, error terms exist
at the measurement indicator level, while in FM, error terms exist at the latent
variable level; (4) RM is suitable for confirmatory research, emphasizing the
fit between theoretical models and actual data and the accuracy of parameter
estimation, whereas FM is suitable for exploratory research, focusing more on
the predictive effectiveness of measurement indicators on latent variables.

Although FM is not as popular as RM (Jia & Bao, 2009), it has received some
attention in China, with studies introducing its basic principles and character-
istics (Wang et al., 2013; Wang & Li, 2011; Ye & Li, 2014). Wang et al. (2011)
simulation study showed that misspecifying FM as RM may cause bias in path
coefficient estimation and increased Type I and Type II error rates, recom-
mending model elaboration and model decomposition methods to avoid model
misspecification.

2.2 Development of Structural Models

Social science research often focuses on dyadic data, such as data from both
spouses, teachers and students, and superiors and subordinates on the same
variable. Such data often lack independence (Li & Huang, 2010). To avoid po-
tential inflation of Type I and Type II errors, specialized statistical methods are
needed. The actor-partner interdependence model (APIM) is a structural model
specifically designed to analyze relationships between paired variables. Taking
the influence of empathy ability (independent variable) of teachers and students
on their perceived social support (dependent variable) as an example, the APIM
path specification includes four components: (1) the effect of student/teacher
empathy on their own perceived social support, i.e., actor effects; (2) the ef-
fect of student/teacher empathy on the other’s perceived social support, i.e.,
partner effects; (3) the correlation between student and teacher empathy, which
controls for the influence of the other independent variable when analyzing the
effect of one independent variable; and (4) the correlation between residuals of
dependent variables for students and teachers, which controls for other sources
of dependence between dependent variables beyond independent variables (Liu
& Wu, 2017). APIM can analyze the magnitude and direction of actor and
partner effects and determine which is more dominant. For details on APIM
principles (Li & Huang, 2010), analysis procedures (Liu & Wu, 2017), model
variations (e.g., APIM with mediators and moderators; Chen et al., 2020; Liu
& Wu, 2017), and software operations (e.g., Mplus and SPSS; Chen et al., 2020;
He et al., 2018), please refer to relevant methodological literature.
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2.3 Development of Full Models

Item parceling can be considered a special method for constructing full models.
This approach aggregates original test items into item parcels, sacrificing the
reliability of measurement model analysis but improving parameter estimation
and model fit for structural models. Domestic research on item parceling in-
volves two aspects. First is the introduction and demonstration of parceling
techniques and strategies. For example, Bian et al. (2007) introduced the basic
logic, advantages and disadvantages, and specific methods of item parceling in
detail. Wu and Wen (2011) further refined parceling methods and provided
operational procedures based on this foundation. For unidimensional scales, the
former researchers recommended random parceling (i.e., parceling without fol-
lowing any pattern) from an economical and practical perspective (Bian et al.,
2007); the latter researchers recommended the balanced method (i.e., first sort-
ing items by factor loading magnitude, then distributing items to each parcel in
an“S”shape) from the perspective of maximizing fit improvement (Wu & Wen,
2011). For multidimensional scales, both groups of researchers recommended
the internal consistency method (i.e., aggregating all items within each dimen-
sion into one item parcel; Bian et al., 2007; Wu & Wen, 2011), as this method
preserves the multidimensional structure of latent variables. Wang et al. (2014)
recommended equal division parceling by dimension for multidimensional scales
in full models and demonstrated through examples that this method can simplify
models, improve the power of path coefficient tests, and achieve ideal fit.

The second aspect involves comparisons between item parceling and other model
forms. For instance, Yang et al. (2010) used an application example to compare
item parceling, path analysis, and unpacked full models, finding that item parcel-
ing yielded better model fit indices, while the unpacked full model produced
higher R2 values than item parceling and path analysis.

2.4 Structural Equation Models for Group Heterogeneity Research

Exploring unobservable group heterogeneity is of interest to many studies, which
has led to numerous SEM-based heterogeneity analysis methods. Liu and Liu
(2015) and Li et al. (2015) summarized such methods, mainly including latent
class/profile models, factor mixture models, and multilevel latent class models.

2.4.1 Latent Class/Profile Models Latent class/profile models classify sub-
jects based on latent trait scores and represent the application of cluster analysis
ideas in SEM. If measurement indicators are categorical variables, it is a latent
class model (LCM); if they are continuous variables, it is a latent profile model
(LPM).

Domestic research on LCM/LPM involves three aspects. First is the intro-
duction of basic principles and analysis procedures of LCM/LPM. For example,
Zhang et al. (2010) introduced the statistical principles, analysis process, and ap-
plication in psychological research of LCM. Guo et al. (2009), Meng et al. (2010),
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and Zeng et al. (2013) demonstrated the analysis process of LCM using simu-
lation study data and application cases. Yin et al. (2020) introduced the basic
principles, steps, and application in organizational behavior research of LPM.

Second is research on LCM/LPM with covariates or analysis of relationships be-
tween latent classes and covariates. For example, Wang and Bi (2018) summa-
rized analysis methods for LCM with covariates (i.e., regression mixture models)
and provided Mplus syntax templates. The academic community generally rec-
ommends using the LTB method (Lanza et al., 2013) for categorical outcome
variables and the BCH method (Bolck et al., 2004) or robust three-step method
for continuous outcome variables, with the latter also applicable when covariates
are predictor variables (Wang & Bi, 2018). Zhang et al. (2017) introduced meth-
ods for subsequent analysis of LPM (i.e., analyzing relationships between latent
classes and antecedent/consequent variables after classification) and pointed out
through simulation studies that the inclusive classification analysis method (i.e.,
including variables needed for subsequent analysis as covariates during latent
profile classification) provides better parameter estimation effects in subsequent
analysis, combining accuracy and robustness. Further research found that when
subsequent analysis variables include outcome variables and product terms of in-
dependent variables and latent class variables, subsequent parameter estimation
effects are better. For more specific analysis procedures, see Zhang et al. (2019).

Third involves examining the classification effectiveness of LCM/LPM through
simulation studies, including comparisons between LCM/LPM and other person-
centered methods and the impact of different data and model conditions on
classification results. For example, Ma et al. (2014) found through simulation
comparisons that, except for special cases with only two latent classes and ex-
tremely unbalanced sample sizes across classes, LCM classification accuracy is
comparable to that of K-means clustering and mixed Rasch models. Zhao et
al. (2013) pointed out through simulation comparisons that LPM classification
accuracy is higher than hierarchical clustering. Wang et al. (2017) examined
the effects of number of classes, class separation, sample size, and number of
measurement indicators on Entropy classification accuracy in LPM through sim-
ulation studies.

2.4.2 Factor Mixture Model The factor mixture model integrates CFA
and LCM within a single model and can be viewed as an LCM using latent
variables from CFA as classification indicators, or as a CFA model considering
group heterogeneity. Chen et al. (2015) introduced the basic principles, main
advantages, application directions, and analysis steps of factor mixture models.
Li et al. (2020) compared the performance of latent class factor models (a varia-
tion of factor mixture models assuming group heterogeneity exists only in latent
means) and LCM under different sample sizes and factor correlation conditions.
Results showed that the former had better model fit and classification effects
than the latter, with more parsimonious and easily identifiable models.
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2.4.3 Multilevel Latent Class Model Multilevel LCM is specifically de-
signed for multilevel structured data and can classify the same measurement in-
dicators at both individual (Level 1) and organizational (Level 2) levels. Zhang
et al. (2013) introduced the basic principles of multilevel latent class models,
demonstrated analysis procedures using elementary school English ability tests
as examples, and compared the effectiveness differences between multilevel LCM
and general LCM.

2.5 Structural Equation Models for Longitudinal Research

Longitudinal research is a design that repeatedly measures the same research
subjects and variables multiple times, processes and analyzes sequential data to
understand variable development trends, relationships between variables, and
individual differences. Domestic SEM methods in longitudinal research mainly
involve models describing development trends and differences (latent growth
model, piecewise growth model, latent class growth model, growth mixture
model, piecewise growth mixture model, and latent transition model) and mod-
els exploring mutual influences between variables (cross-lagged model).

2.5.1 Models Describing Development Trends and Differences La-
tent Growth Model. The latent growth model (LGM) uses observed values
of variables at different time points as measurement indicators, with an inter-
cept factor reflecting subjects’baseline trait levels (factor loadings fixed at 1)
and several slope factors reflecting linear or non-linear change trends of traits.
It can simultaneously explore individual differences and development trends of
psychological traits. Numerous methodological articles have introduced the ba-
sic principles, common variations, software operations (e.g., Mplus and SAS),
and advantages and disadvantages of LGM (Li et al., 2012; Song & Wu, 2017;
Su & Xu, 2017; Xu et al., 2007). Li et al. (2014) compared LGM and multilevel
models from perspectives of mathematical form, prerequisite assumptions, data
format, parameter estimation, and modeling flexibility and complexity, point-
ing out that multilevel modeling is simpler and more direct, while LGM is more
flexible, can relax restrictions on equal measurement errors, freely estimate each
measurement error, and provides better parameter estimation precision.

Piecewise Growth Model. LGM assumes that individual developmental
trajectories are always continuous, ignoring possible stage characteristics and
turning points in development (e.g., slow growth in early stages and fast growth
in later stages). Piecewise growth models (PGM) allow growth curves to have
different developmental stages. Liu et al. (2013) explored differences in param-
eter estimation effectiveness between PGMs defined under SEM and multilevel
model frameworks and the consequences of incorrectly specifying PGM as non-
stage models through simulation studies.

Latent Class Growth Model and Growth Mixture Model. LGM as-
sumes that latent variables have the same developmental trajectory across indi-
viduals, ignoring possible heterogeneity. Latent class growth models (LCGM)
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and growth mixture models (GMM) combine LCM and LGM to classify indi-
viduals according to different trait development trends. The former assumes
no individual differences within the same class, while the latter has no such
restriction (Li et al., 2015), with the former being a special case of the latter
(Wang et al., 2014; Xiao et al., 2020). For detailed introductions to LCGM, see
Lü and Zhao (2018) or Wang et al. (2014); for GMM, see Liu (2007), Wang et
al. (2014), Xiao et al. (2020), or Yu et al. (2018).

Piecewise Growth Mixture Model. The piecewise growth mixture model
(PGMM) combines PGM and GMM, allowing developmental trajectories to be
both stage-based and group-heterogeneous. Wang et al. (2017) described the
basic principles, common model forms, parameter estimation methods and in-
fluencing factors, sample size requirements, fit evaluation indices, application
status, and future research directions of PGMM in detail. Liu et al. (2014) used
simulation studies to examine the effects of latent class separation and develop-
mental model shape on model selection and parameter estimation of PGMM.

Latent Transition Model. The latent transition model (LTM) extends LCM
to longitudinal research, not only exploring possible latent classes at each time
point and allowing latent classes to change but also examining the probability of
individuals transitioning from one class to others. Wang et al. (2015) and Huang
(2019) introduced the statistical principles of LTM and demonstrated analysis
procedures and result interpretation using adolescent impulsive behavior and
English reading comprehension tests as examples. Huang (2018) introduced the
theoretical foundation, transition mechanism, model characteristics, application
status, and development prospects of LTM based on mixed item response theory.

2.5.2 Models Exploring Mutual Influences Between Variables The
cross-lagged model analyzes mutual influences between multiple variables across
time to explore causal relationships. The model focuses on several effects (Liu
et al., 2022): (1) autoregressive effects, i.e., the influence of a variable’s previous
measurement on its subsequent measurement, reflecting cross-time stability of
variables (test-retest reliability); (2) cross-lagged effects, i.e., the effect of vari-
able A’s previous measurement on variable B’s subsequent measurement while
controlling for variable B’s previous measurement, and the effect of variable
B’s previous measurement on variable A’s subsequent measurement while con-
trolling for variable A’s previous measurement. The causal order of A and B is
determined by whether the predictive effect of the prior causal variable on the
subsequent outcome variable (represented by standardized path coefficients) is
significantly stronger than the predictive effect of the prior outcome variable on
the subsequent causal variable (Zhou et al., 2020). This method can better sat-
isfy questionnaire research requirements for causal inference regarding temporal
precedence and control of irrelevant variables (Wen, 2017).
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3. Parameter Estimation Methods for Structural Equation
Models
SEM parameter estimation is based on analysis of covariance structures. Let
Σ(�) and S represent the covariance matrix derived from the theoretical model
and the sample covariance matrix, respectively, with � being the parameter
vector. The fitting function F[S, Σ(�)] represents the distance between Σ(�)
and S. The parameter estimation process involves finding the estimate of � that
minimizes F[S, Σ(�)]. Different methods for constructing the fitting function
produce different parameter estimation methods. The most commonly used
method is maximum likelihood estimation (ML). For non-normal data, robust
maximum likelihood estimation (MLR) or weighted least squares with mean
and variance adjusted (WLSMV) are typically used. The former provides more
accurate estimation of factor correlations and parameter standard errors, while
the latter provides more accurate estimation of factor loadings (Li, 2016) and
is more suitable for data with fewer response categories.

Domestic research on SEM parameter estimation methods mainly involves two
aspects: introduction of methods, primarily including partial least squares (PLS)
and Bayesian methods; and comparison of parameter estimation methods.

3.1 Partial Least Squares Method

Traditional parameter estimation methods solve SEM by minimizing the fitting
function, emphasizing parameter estimation precision. In contrast, PLS solves
SEM by minimizing residual variance, emphasizing the predictive precision of
predictor variables on outcome variables in equations. This characteristic aligns
well with the main purpose of formative modeling (pursuing maximum explana-
tory power of measurement indicators on factors). Therefore, PLS is often used
to analyze formative models, typically using specialized software such as Smart-
PLS, semPLS, or WarpPLS. Compared with traditional parameter estimation
methods, PLS advantages mainly include: (1) better suitability for small sam-
ples and non-normal data; (2) suitability for complex models (i.e., models with
high ratios of variables to sample size); (3) suitability for formative model anal-
ysis; (4) suitability for SEM research exploring the effects of multiple predictor
variables (Luo, 2020).

Domestic introductions to PLS mainly involve two aspects. First is the intro-
duction and evaluation of PLS. For example, Zhu and Liu (2005) and Ning et
al. (2007) introduced the parameter estimation process of PLS in detail. Sun
and Yang (2009) summarized and discussed three important issues in PLS-based
SEM: how to select measurement models, how to use bootstrap methods to es-
timate and test parameters, and how to evaluate models. Liu et al. (2005)
discussed the geometric meaning of the PLS algorithm. Ning and Liu (2007)
examined the effectiveness of PLS in estimating SEM parameters through sim-
ulation studies, finding that this method underestimates structural coefficients
and overestimates factor loadings. When sample size is large, results are basi-
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cally credible.

Second is the extension of PLS in specific models and data. For example, Lin
et al. (2006) introduced how to extend the PLS algorithm for two latent vari-
ables to multiple latent variables. Cheng and Yi (2016) introduced the basic
principles and advantages of using PLS to estimate second-order factor mod-
els. Zhao (2011) discussed the advantages and disadvantages of different weight
estimation algorithm patterns when using PLS to estimate second-order factor
models. Wang et al. (2020) introduced quantile effect estimation methods for
PLS path models (general SEM predicts the mean of dependent variables us-
ing independent variables, while quantile effects refer to predicting percentiles
of dependent variables using independent variables). Meng and Wang (2009)
and Li and Yue (2017) introduced how to apply PLS-based path analysis and
PLS-based SEM to compositional data (i.e., data ranging between 0-1 with sum
equal to 1). Ren and Wang (2010) introduced and recommended using fuzzy
PLS for SEM modeling of data with uncertainty (e.g., middle options in Lik-
ert scales often indicate uncertainty). Application examples showed that this
method provides more accurate parameter estimates and better model fit than
PLS without fuzzy processing.

3.2 Bayesian Methods

Bayesian statistical analysis is a process that incorporates existing experience
and knowledge about parameters to be estimated (i.e., prior information) into
parameter estimation. The parameter estimation process when using Bayesian
methods for SEM is as follows: (1) First, specify the theoretical model, which
is no different from ordinary SEM. (2) Set prior distribution parameters (also
called hyperparameters) for all unknown parameters. Parameters of research
interest are generally target factor loadings and path coefficients, typically as-
sumed to follow normal distributions requiring specification of mean and vari-
ance parameters, which can refer to existing research, especially meta-analyses
(Yan & Mao et al., 2018). It should be emphasized that although many software
programs can provide default prior distribution parameters (non-informative
priors, equivalent to using only the Bayesian estimation framework without
utilizing prior information), the core advantage of Bayesian methods is using
prior information to aid parameter estimation. Research has found that using
non-informative priors is not stronger than ML, and Bayesian estimation based
on non-informative priors may even cause serious instability and biased estima-
tion results with small samples (Smid & Winter, 2020). Therefore, when using
Bayesian methods, informative priors should be used as much as possible. (3)
Use Gibbs sampling of Markov chain Monte Carlo (MCMC) methods to ob-
tain posterior distributions of parameters (Zhang, 2009). Whether estimation
results have converged can be determined using potential scale reduction, trace
plots, and effective sample size (for specific interpretation methods, see Wang,
Deng, & Bi, 2017 and Smid & Winter, 2020). After convergence, central ten-
dency measures of posterior distributions (e.g., mean or median) can be used as
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point estimates of model parameters. Meanwhile, with posterior distributions,
Bayesian credible intervals can be obtained.

Compared with traditional frequency theory-based SEM parameter estimation
methods, the main advantages of Bayesian methods are: (1) better estima-
tion effects under small sample conditions, especially when effective prior in-
formation can be provided; (2) faster computation speed (Wang, Deng, & Bi,
2017); (3) when models are complex or the ratio of parameters to sample size is
high, traditional parameter estimation often encounters convergence problems,
while Bayesian methods often converge to appropriate solutions (Liang & Yang,
2016; Wang, Deng, & Bi, 2017); (4) Bayesian methods are less affected by non-
normality (Yan, Li, et al., 2018); (5) models that are not identifiable by tradi-
tional methods (e.g., allowing all cross-factor loadings and residual correlations
to be freely estimated would exhaust degrees of freedom and make the model
unidentifiable) may still be identifiable by incorporating prior information and
using MCMC methods (Yan, Li, et al., 2018); (6) credible intervals obtained
through Bayesian methods are more intuitively interpretable than traditional
confidence intervals.

Wang, Deng, and Bi (2017) and Yan, Li, et al. (2018) introduced the basic
concepts of Bayesian SEM (BSEM) and demonstrated analysis procedures and
result interpretation with examples. Zhang et al. (2019) analyzed the appli-
cation advantages and current status of Bayesian methods in different SEM
variations (e.g., ordinary measurement models, latent mediation models, latent
growth models, multi-group SEM, and multilevel SEM) and introduced model
evaluation and available software for BSEM. Qin et al. (2020) introduced how to
use SAS software to call OpenBUGS programs for more efficient implementation
of BSEM.

3.3 Other Parameter Estimation Methods

In addition to PLS and Bayesian methods, Wu (2012) suggested using the
Tikhonov regularization method to modify ML parameter estimation. Simu-
lation studies showed this helps improve convergence rates and speed, reduce
improper solutions, and decrease estimation bias. For dichotomous and ordinal
data, some researchers suggested using polychoric correlation matrices to esti-
mate model parameters (Wu & Zu, 2010) and provided LISREL example syntax
(Wang et al., 2012; Wu et al., 2012). Parameter estimates based on polychoric
correlation matrices have smaller bias than those based on Pearson correlation
matrices (Zhou et al., 2013). Tong et al. (2009) introduced constrained least
squares solutions for SEM and extended them to higher-order measurement mod-
els and multi-group SEM (Tong, Zou, et al., 2009). This method can improve
parameter estimation convergence rates and speed and obtain unique solutions.
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3.4 Comparison of Parameter Estimation Methods

Some SEM parameter estimation method comparison studies focus on the per-
formance of weighted least squares (WLS), diagonal weighted least squares
(DWLS), and generalized least squares (GLS) (Jiao, Wang, et al., 2015; Jiao,
Wang, et al., 2015; Wu, 2010). However, these methods are not widely applied,
and literature has long pointed out that their overall performance is not superior
to ML (Hou et al., 2004).

More noteworthy are comparisons between currently popular estimation meth-
ods and new methods. For example, Liu, Luo, et al. (2012) simulated and
compared the precision of MLR, WLSMV, and MCMC methods in estimating
dichotomous data measurement models. Results showed that all three methods
provided good estimation precision for factor loadings and other parameters,
with MLR and WLSMV slightly outperforming MCMC, and WLSMV also hav-
ing the advantage of faster computation. Tian and Fu (2004, 2005) simulated
and compared the performance of ML and Bayesian methods in SEM parameter
estimation, finding that Bayesian estimation precision was slightly better than
ML but not substantially. Liang and Yang (2016) simulated and compared MLR
and non-informative Bayesian methods in measurement models. Results showed:
(1) For ability to identify misspecified models, Bayesian methods were stronger
under non-normal conditions but weaker than MLR under normal conditions.
(2) Bayesian methods had far stronger convergence ability than MLR, with this
advantage being particularly pronounced in complex models (e.g., bifactor mod-
els). Yan and Mao et al. (2018) compared ML and Bayesian methods in small
sample latent variable modeling through an application example. Although both
produced similar parameter estimates for path coefficients and factor loadings,
the former produced abnormal solutions such as negative variances.

Huo (2006), Li (2012), and Zhang (2007) compared PLS with traditional param-
eter estimation methods (e.g., ML, WLS, DWLS, and GLS) from theoretical
aspects such as parameter estimation purpose, basic principles, and prerequi-
site conditions. Zhang (2015) conducted simulation comparisons between the
two, finding that PLS parameter estimation had stronger stability but lower
sensitivity to misspecified models. Liu and Chen (2007) proposed using the
Generalized Maximum Entropy method to estimate SEM parameters and simu-
lated and compared parameter estimation bias between Generalized Maximum
Entropy and PLS, finding that the mean squared error of parameters obtained
by Generalized Maximum Entropy was always smaller than that of PLS.

4. Structural Equation Model Evaluation
Interpretation of SEM parameters is based on the assumption that the hypoth-
esized model fits the actual data well. Model fit is primarily evaluated through
fit indices, involving methodological issues including proposal of new fit indices,
critical values of fit indices, selection of fit indices, and model evaluation crite-
ria beyond fit indices. Additionally, comparison and selection among multiple
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models are also important aspects of model evaluation.

4.1 Development of Fit Indices

Since SEM became popular, researchers have proposed over 40 fit indices. Wen
et al. (2004) discussed properties that good fit indices should have (not system-
atically affected by sample size, penalizing complex models, and being sensitive
to misspecified models). It is now generally accepted that CFI (comparative fit
index), TLI (Tucker-Lewis index), RMSEA (root mean square error of approx-
imation), and SRMR (standardized root mean square residual) are fit indices
with good statistical properties (Wen & Liu, 2020).

In recent years, some studies have attempted to propose new fit indices. For
example, Wang et al. (2018) proposed a corrected GFI (goodness-of-fit index,
CGFI) to address the defects of GFI being systematically affected by sample size
and not penalizing complex models. Another new fit index is the equivalence-
testing-based fit index proposed by Yuan and Chan (2016; Wang et al., 2020).
The basic idea is to address the logical problem of traditional �2 (taking the null
hypothesis of perfect model fit as the hypothesis to be proved) by setting a new
null hypothesis (model misfit greater than a tolerable small positive number) and
alternative hypothesis (model misfit not greater than tolerable misfit). Based
on this, fit indices RMSEAt and CFIt are proposed. Unlike traditional RMSEA
and CFI, RMSEAt and CFIt have inferential statistical properties. Taking
RMSEAt as an example, it represents that the size of model misfit does not
exceed RMSEAt, and the probability of making this inference error does not
exceed the significance level 𝛼.

Additionally, for the recently popular BSEM, there are specialized fit evaluation
indices: (1) Posterior predictive p-value (ppp). It reflects the gap between the
observed data fit function and the sample data fit function based on posterior
distribution (Liang & Yang, 2016). Values approximating 0.5 indicate good
model fit, while values close to 0 or 1 indicate poor fit. (2) Bayes factors. They
can be roughly understood as the ratio of support strength for two competing
models from current data. Empirically, a Bayes factor greater than 10 for two
competing models indicates strong evidence supporting the model represented
by the numerator; a Bayes factor less than 1/10 indicates strong evidence sup-
porting the model represented by the denominator (Hu et al., 2018); a Bayes
factor between 1/3 and 3 indicates similar support strength for both models
(Zhang et al., 2019). (3) Lv. Compared with Bayes factors, this statistic has
the advantages of smaller computational load and less dependence on prior infor-
mation. Smaller Lv values indicate better model fit. Li et al.’s series of papers
introduced the statistical principles of Lv in detail and applied it to model selec-
tion for SEM with ordinal variables and missing data and two-level SEM (Li &
Wang, 2011, 2012; Li & Yang, 2014). (4) Bayesian information criterion (BIC)
and deviance information criterion (DIC). Both indices are only used for model
comparison, with smaller values indicating better model fit.
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Additionally, when data do not follow a normal distribution, some studies pro-
pose using the Satorra-Bentler corrected �2 to evaluate model fit (Liu et al.,
2013). Jin and Liang (2005) introduced fit evaluation indices suitable for PLS-
based SEM, including factor communality, R2 (predictive effect of exogenous
latent variables on endogenous latent variables), and redundancy (average vari-
ance of endogenous latent variable measurement indicators explained by exoge-
nous latent variables).

4.2 Critical Values of Fit Indices

For commonly used fit indices CFI, TLI, RMSEA, and SRMR, it is generally
believed that when CFI and TLI are not less than 0.9 (Bentler & Bonett, 1980)
and RMSEA and SRMR are not greater than 0.08 (Browne & Cudeck, 1992),
the model is acceptable. However, some researchers recommend stricter criteria:
CFI and TLI not less than 0.95 and RMSEA and SRMR not greater than 0.05
(Hu & Bentler, 1999). This stricter criterion is now commonly used as the
standard for excellent model fit. Such critical standards are only empirically
based conventional judgments.

Some researchers have designed special true models and misspecified models
for simulation studies to determine optimal fit critical values under different
conditions based on the sum of Type I and Type II error rates when different
critical values are adopted for each fit index (Guo et al., 2007, 2008). However,
the gap between true and misspecified models is complex and diverse, and op-
timal fit critical values change with this gap. Literature has pointed out that
this practice of determining fixed critical values through simulation studies is
inappropriate (Wen & Hou, 2008; Marsh et al., 2004).

4.3 Selection of Fit Indices

Given the numerous available fit indices, consideration must be given to which
indices to report. Wang et al. (2010), through summarizing and analyzing exist-
ing fit index performance evaluation studies, concluded that TLI and RMSEA
are the most trustworthy fit indices, although CFI, RNI, Mc, SRMR, and �2/df
also have some reference value. Some researchers, by analyzing fit index for-
mulas, found that except for extreme cases where the theoretical model is not
superior to the independence model (a model with only observed variables that
are uncorrelated), CFI is always greater than or equal to TLI (Wen & Liang,
2015). Therefore, when TLI is acceptable, CFI is redundant. Moreover, CFI
does not penalize complex models (Wen et al., 2004), so when several models all
fit the data well, it cannot help researchers select a more parsimonious model.
Thus, researchers can choose to report TLI, RMSEA, and SRMR.

4.4 Other Model Evaluation Criteria

Applied researchers often treat fit indices as the most important or even the
only model evaluation criterion. Many articles have criticized this practice. On
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the one hand, each index only evaluates fit from a specific perspective and has
inherent limitations (Wang et al., 2020). On the other hand, fit indices are
generally affected by factors other than model fit degree, such as sample size,
data distribution, factor loadings, and parameter estimation methods (Wang
et al., 2020; Wen et al., 2008; Shi & Maydeu-Olivares, 2020). Therefore, it is
necessary to refer to other criteria when evaluating model fit, such as parameter
estimation evaluation, overall fit, internal fit, and cross-validation (Hou et al.,
2004; Wen et al., 2004, 2008; Zheng & Wu, 2014).

First, examine whether the parameter estimation process converges normally.
Identification or convergence problems often indicate unreasonable model spec-
ification. Then check four aspects: (1) Are model parameter signs appropriate
and statistically significant? Nonsignificant parameters should be considered
for modification (Hou et al., 2004). (2) Is R2 sufficiently large? For measure-
ment models, too small R2 indicates low loadings, meaning low item reliability
(Wen et al., 2008). Many studies have found that fit indices tend to support
models with lower reliability (e.g., Greiff & Heene, 2017), so it is necessary to
balance fit indices and reliability. (3) Are there abnormal elements in the resid-
ual matrix (Wen et al., 2008)? Too large absolute residuals indicate obvious
gaps between theoretical models and data. (4) Which paths or loadings have
large modification indices (Hou et al., 2004)? Too large modification indices
mean that arrows in the model may point to wrong positions. Analyzing these
parameter estimation-related evaluation indicators before examining fit indices
can improve the power to detect misspecified models (Wen et al., 2008; Zheng
& Wu, 2014).

After parameter estimation evaluation, fit indices are examined. Fit indices
evaluate overall model fit. In addition, internal model fit can be examined, i.e.,
evaluating whether each latent variable is appropriately set from the model’
s internal quality (Zheng & Wu, 2014). This mainly includes: (1) checking
measurement tool reliability, where CFA can be used to calculate composite
reliability; (2) checking measurement tool validity, including content validity,
criterion-related validity, and construct validity.

Additionally, composite validity (i.e., cross-validation) can be examined by split-
ting data into two parts, using Sample 1 (calibration sample) to estimate pa-
rameters, then assigning these parameters to Sample 2 and examining its fit.
Differences between results from the two samples can also be compared (Zheng
& Wu, 2014). The ideal situation is that both samples show good and similar
fit.

4.5 Strategies for Model Comparison and Selection

For the same dataset, more than one model may fit well, requiring comparison of
multiple models’fit to select the optimal model. Liu et al. (2007) introduced con-
cepts and characteristics of nested models and comparison and selection meth-
ods for nested and non-nested models. For nested models, they recommended
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comparing five models: independent null model Mn, saturated model Ma, the
theoretically interesting model Mt, and two secondarily interesting theoretical
models Mc and Mu. First, use Ma’s �2 (minimum �2) and Mn’s degrees of
freedom (maximum degrees of freedom) for �2 testing. If statistically significant,
all models are unacceptable; if not significant, find the optimal model through
�2 difference tests among models. For non-nested models, it is generally rec-
ommended to compare the expected cross-validation index (ECVI) and Akaike
information criterion (AIC), with smaller values indicating better models. Luo
and Zhang (2006) used creative thinking tests as examples to demonstrate how
to compare and select optimal CFA models based on �2 difference tests and
model parsimony. Additionally, Guo (2005)⋯

5. Multi-Group Measurement Models (Measurement In-
variance)
Measurement invariance refers to SEM having the same structure and parameter
values across different groups or time points, generally involving testing model
form, factor loadings, intercepts, factor and error variance-covariance, and la-
tent mean invariance (latent mean comparison involves mean structure models,
which are special forms of SEM; Hou et al., 2004). Most domestic methodologi-
cal literature on measurement invariance focuses on introducing various models
to be tested, testing procedures, and model evaluation criteria (e.g., Bai & Chen,
2004; Liu, 2005; Liu & Wu, 2005; Liu & Yuan, 2015; Wei & Zheng, 2015; Wu &
Zhang, 2011; Wu et al., 2009; Xu, 2010; Zhang et al., 2012; Zhao, 2007; Zheng
et al., 2014). Additionally, two research directions on measurement invariance
have received attention. The first is how to implement measurement invariance
analysis in specific models or data. For example, Zheng et al. (2011) introduced
measurement invariance analysis methods for second-order factor models. The
main difference from traditional measurement invariance analysis is that all in-
variance constraints must be set separately at both first-order and second-order
levels. Li and Liu (2011) recommended using WLSMV for parameter estimation
and the corrected chi-square difference test (DIFFTEST) based on WLSMV to
compare nested models when conducting measurement invariance analysis for
ordinal data. Their simulation studies showed that WLSMV provided accurate
estimation of factor loadings and threshold parameters, and DIFFTEST had
acceptable Type I and Type II error rates (Li & Liu, 2011), with performance
not inferior to item response theory-based methods (Liu, Li, et al., 2012).

The second aspect is that many constrained models in measurement invariance
analysis are too strict and difficult to achieve (Wen et al., 2019). Some studies
specifically discuss this issue. For example, when configural invariance and
loading invariance hold but intercept invariance is not satisfied, if researchers
still want to compare latent means, the projection method can be used (Wang et
al., 2020; Deng & Yuan, 2016). This method decomposes each group’s observed
variable means into two orthogonal components: common scores (representing
latent means) and specific factors. Cross-group invariance analysis of these two
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components does not depend on intercept terms, thus allowing latent mean
comparison to bypass the traditional prerequisite of intercept invariance.

If only configural invariance holds but subsequent invariance constrained models
fit poorly, the alignment method is recommended. This method constructs a
loss function reflecting differences in intercepts and loadings across groups and
obtains loading and intercept estimates that minimize the loss function. At
this time, corresponding parameters across groups in the constrained model are
not completely equal but sufficiently close, and this model has the same fit as
the configural invariance model. The alignment method can be considered an
approximate invariance model. For specific principles, application examples,
and Mplus syntax, see Wen et al. (2019). Additionally, recent researchers have
recommended using BSEM to analyze measurement invariance. By setting prior
distributions with mean 0 and extremely small variance for parameters to be
tested, cross-group invariance restrictions can be relaxed to achieve approximate
invariance analysis (Song et al., 2021).

6. Special Data Processing in Structural Equation Models
Special data processing here mainly includes missing data, non-continuous data,
non-normal data, and latent variable scores.

6.1 Missing Data Issues in SEM

When too much missing data exists in SEM modeling, model estimation may
encounter problems (e.g., non-positive definite covariance matrices; Lin et al.,
2010). Recommending good missing data imputation methods and comparing
the effects of different methods are important research tasks. In terms of method
recommendations, multiple imputation (MI) and full information maximum like-
lihood (FIML) are currently the most respected missing data processing methods
(Wang & Deng, 2016). MI imputes missing data multiple times, analyzes each
imputed complete dataset to obtain multiple estimates of target parameters,
and finally summarizes multiple estimates to obtain final parameter estimates.
FIML does not replace missing values but uses iterative estimation based on
information from non-missing data. MI advantages include fully considering
data uncertainty and more flexibly handling mixed data containing both contin-
uous and non-continuous variables (Mansolf et al., 2020); disadvantages include
more complex and time-consuming analysis processes (Ye et al., 2014). The
main advantage of FIML is operational simplicity (Wang & Deng, 2016), while
disadvantages include sometimes encountering inflated Type I error rates and
model convergence problems (Mansolf et al., 2020).

In terms of method comparisons, Yang and Cao (2012) simulated and compared
the effects of full Bayesian methods (treating missing data as unknown param-
eters and estimating model parameters and missing values by simulating joint
posterior distributions of all variables and missing values) and partial Bayesian
methods (equivalent to ignoring missing values in Bayesian estimation) in han-
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dling missing data in LGM. Results showed that when missing proportions ex-
ceeded 50%, the former had significantly smaller mean squared errors than the
latter, i.e., higher parameter estimation precision; when missing proportions
were small, both methods performed similarly. Chen and Liu (2015) simu-
lated and compared ML and the Diggle-Kenward selection model in handling
non-random missing data in LGM, with the latter generally performing better.
Deng et al. (2018) used empirical data to compare listwise deletion, expecta-
tion maximization algorithm, MI, and FIML in handling missing data in SEM,
finding that MI and FIML obtained better model fit, expectation maximization
algorithm obtained the smallest parameter standard errors, and listwise deletion
obtained the largest parameter standard errors. Wang and Deng (2016) used
simulation studies to explore the role of auxiliary variables when using FIML to
handle missing data in SEM, generally finding that including auxiliary variables
helps obtain more reliable parameter estimates.

6.2 Non-Continuous and Non-Normal Data Issues in SEM

Questionnaire data used in social science research are often ordinal. Directly
treating them as continuous variables in modeling may reduce parameter esti-
mation precision and model fit. Gao (2012) proposed a continuous processing
procedure for ordinal data and demonstrated through application examples that
this method improves model fit.

Fang and Huang (2010) introduced common SEM modeling methods for non-
normal data, recommending the use of the Bollen-Stine Bootstrap method to
correct �2 test results and provided Amos operation demonstrations.

6.3 Latent Variable Score Issues in SEM

Zhang et al. (2005) introduced the estimation principles of latent variable scores
in SEM and demonstrated latent variable score calculation using LISREL. Liu
and Liu (2017) introduced weighted factor score calculation methods for global
and local factors in bifactor models. Simulation studies showed that weighted
factor scores are closest to true scores and have the highest reliability compared
with other methods of synthesizing total test scores and dimension scores. Addi-
tionally, Zhang et al. (2012) introduced methods for determining latent variable
data types.

7. Other Topics
In addition to the five major themes discussed above, domestic SEM method-
ological research includes other noteworthy topics, including how to incorporate
traditional statistical and measurement methods into the SEM framework, dis-
cussions on error correlation issues, improvements to SEM modeling steps, SEM
power analysis, etc.

Given SEM’s many advantages and its compatibility with other statistical meth-
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ods, some researchers have introduced methods combining traditional statistical
and measurement methods with SEM to improve analysis accuracy and mod-
eling flexibility. Examples include reliability calculation based on CFA models
(see Wen, Fang, Chen, et al., 2022), various mediation models based on SEM
(see Wen, Fang, Xie, et al., 2022) and moderation models (see Fang et al., 2022),
multilevel models based on SEM (Bi, 2019; Fang et al., 2011; Zhang et al., 2006;
Zhang et al., 2008), meta-analysis based on SEM (Gui et al., 2016; Qian et
al., 2015), time series analysis based on SEM (Zhu, 2016), artificial neural net-
work models based on SEM (Yan et al., 2019; Zhao & Wan, 2003), item factor
analysis based on SEM (Wu & Tu, 2013), indicator systems based on SEM
(i.e., hierarchical measurement indicator systems with weights established for
abstract concepts; Jia, 2011; Si et al., 2014; Tian, 2007; Wang & Fu, 2004; Yu,
2020; Zhang & Wang, 2008), fuzzy comprehensive evaluation algorithms based
on SEM (Zhuang & Liu, 2013), hidden Markov models based on SEM (Wang
et al., 2018; Xia et al., 2016), and computer adaptive testing based on bifactor
models (Liu et al., 2019; Mao et al., 2019; Mao et al., 2018).

Usually, measurement error correlations should not be specified in SEM without
sufficient justification. When systematic correlation sources exist among error
terms, error correlations can be specified. For example, it is reasonable to
specify errors of items measured by the same method and errors of repeated
measurements of the same item as correlated. Additionally, when the model
has multiple large error correlation modification indices, error correlations can
be explained by adding latent common method factors (Hu et al., 2018).

To address the problem that inappropriate model specification in SEM modeling
processes may reduce model fit, Chen (2004) proposed improving SEM modeling
steps, mainly adding steps to identify and eliminate inappropriate questionnaire
items (items with low correlation with measured variables or excessive correla-
tion with other items) and variables with excessively strong correlations, and
re-evaluating measurement model and structural model fit.

An (2016) summarized common methods for power analysis in SEM and demon-
strated how to conduct power analysis using Mplus with teacher-student rela-
tionship questionnaires as examples. Wang and Zhang (2007) introduced back-
ward prediction algorithms for SEM, i.e., how to predict future relationships
between variables based on current SEM, and supported the prediction effec-
tiveness of this algorithm through simulation studies. Shan and Zhang (2020)
derived formulas for calculating average causal effects when dependent vari-
ables and covariates (irrelevant variables that simultaneously affect independent
and dependent variables) are latent variables while independent variables are
observed variables. Jia and Liu (2008) compared similarities and differences
between SEM and simultaneous equation models from aspects of variables, sam-
ples, data, parameter estimation, and model interpretation.
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8. Discussion and Future Directions
In the 20 years of the new century, SEM has received increasing attention and
application in social sciences, which has also driven the development of SEM
methodological research. In China, more than ten different disciplines have con-
tributed to SEM methodological research, producing abundant results across
five themes. Within one year after 2020, just in the direction of SEM in longi-
tudinal research, multiple new articles were added (Fang et al., in press; Gao et
al., 2021; Liu, 2021; Wen & Zhu, 2021; Yuan et al., 2021; Zheng et al., 2021).
Specific introductions can be found in Liu et al. (2022) and will not be repeated
here. In other directions, such as measurement invariance, there are also new
methodological developments (Song et al., 2021). To better understand cur-
rent SEM research, we also introduce some newer foreign SEM methodological
studies, which reveal directions worth exploring and expanding for domestic
methodologists in the future.

8.1 Expansion of Original Themes

In terms of model development, we briefly introduce bifactor ESEM and SEM
trees. Although bifactor models and ESEM each overcome some important
limitations of traditional CFA, they also have shortcomings. The former ignores
the fact that cross-factor loadings are widespread, which may overestimate factor
correlations; the latter ignores the possibility of higher-order factors, which can
lead to overestimated cross-factor loadings. Bifactor ESEM, which combines
bifactor models and ESEM, well compensates for the limitations of using the
two models independently (Morin et al., 2016).

SEM trees combine SEM and decision trees, allowing classification of a certain
outcome variable or its change trajectory (e.g., children’s reading ability de-
velopment trajectory) based on predictor variables selected by researchers (e.g.,
children’s motor skills, learning styles, and life knowledge). When there are
many valuable predictor variables, predictor variables generally have interaction
effects, or there is insufficient prior knowledge about the number of classifica-
tions, SEM trees are considered a good alternative to finite mixture models (i.e.,
LCM, LPM, LCGM, GMM, and PGMM) (Jacobucci et al., 2017).

In terms of parameter estimation methods, we briefly introduce research
progress on parameter estimation accuracy when models are misspecified and
evaluation of parameter estimation uncertainty. Lai and Zhang (2017) found
through simulation comparison studies that for CFA models, ML can provide
reliable parameter point estimates even when models are seriously misspecified;
but for full SEM, when misspecification is large, various parameter estimation
methods have relatively large biases. The fungible parameter estimates
proposed by Pek and Wu (2018) evaluate the sensitivity of SEM parameter
estimation to sampling variation unrelated to the parameters.

In terms of model evaluation, we briefly introduce some new fit indices (including
local fit tests and BSEM fit indices) and new developments in critical values.
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Traditional fit indices are only used to evaluate overall model fit. The local fit
test proposed by Thoemmes et al. (2018) provides separate fit evaluations for
different parts of the model, helping to locate sources of model misspecification
and can still be used even when models are not identified or do not converge.

With the popularity of BSEM, how to evaluate its goodness of fit has become
an important issue. Fit evaluation indices used in BSEM are not familiar tradi-
tional fit indices to researchers, and most are only used for model comparison
(e.g., Bayes factors and deviance information criterion). Garnier-Villarreal and
Jorgensen (2020) constructed seven new fit indices based on BSEM, such as
RMSEA, CFI, and TLI, by replacing �2 with parameter posterior means.

Regarding critical value determination, McNeish and Wolf (2021) proposed a
dynamic fit index critical value based on data simulation technology. This criti-
cal value considers various model and data characteristic factors affecting model
fit and can effectively reject misspecified models.

In terms of measurement invariance analysis, by defining new differential item
functioning (DIF) or viewing invariance issues as clustering or moderation prob-
lems of model parameters, cross-group measurement invariance can be inter-
preted from new different perspectives (Bauer, 2017; De Roover et al., 2020;
Schulze & Pohl, 2021).

Additionally, there are expansions of SEM for special data, involving non-
continuous data SEM modeling methods such as logistic latent growth models
and nominal variable factor analysis (Asparouhov & Muthén, 2021), and
research related to small sample data modeling (Jiang & Yuan, 2017; Smid &
Winter, 2020).

8.2 Opening New Topics

New topics in the SEM field continue to emerge, such as SEM for exploratory
purposes, SEM for experimental research, use of instrumental variables in SEM,
and development of SEM software packages.

The vast majority of SEM applications are confirmatory in nature. However,
for large-scale studies with massive data, it may be necessary to explore which
of multiple antecedent variables have practical effects without prior hypotheses.
This exploratory perspective on SEM can be implemented using regularization
methods. Regularized SEM adds a penalty term to the fitting function or sets
special priors for parameters (e.g., small-variance cross-factor loading priors) to
shrink small coefficients to zero, thereby serving as variable or path screening
(Jacobucci et al., 2016; Lu et al., 2016; Muthén & Asparouhov, 2012; Pan et al.,
2017).

In recent years, many foreign methodological articles have combined traditional
statistical methods in experimental research with latent variable modeling ideas,
forming latent variable modeling methods based on experimental research. For
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example, Breitsohl (2019) compared between-subjects ANOVA with two SEM-
based methods: structured-means-modeling and multiple-indicator multiple-
cause models. Both SEM methods represent dependent variables as latent vari-
ables, with the difference being that structured-means-modeling simultaneously
models dependent variables corresponding to each experimental treatment and
compares latent means, while multiple-indicator multiple-cause models directly
establish regression of latent dependent variables on manipulation variables. An-
other example is the latent repeated measures analysis of variance proposed by
Langenberg et al. (2020), which replaces single-indicator observed outcome vari-
ables with multi-indicator latent variables, improving the power of main effects
and interaction effects, relaxing assumptions about missing data and residual
structures, and verifying whether strong invariance is satisfied through measure-
ment invariance analysis.

Instrumental variables are variables that researchers are not interested in but
can explain endogeneity of predictor variables (i.e., predictor variables correlate
with model residuals) and are unrelated to model residuals. By using instru-
mental variables, predictor variables are decomposed into exogenous parts unre-
lated to residuals and endogenous parts correlated with residuals, and only the
exogenous part is used to estimate path coefficients of interest. This can solve
endogeneity problems, obtain more accurate estimates of model coefficients, and
thereby enhance SEM’s causal inference ability (Maydeu-Olivares et al., 2020).

Although there are many specialized SEM software programs (e.g., Amos, EQS,
LISREL, and Mplus), traditional software also has some limitations, and many
newly proposed frontier methods cannot be quickly incorporated into traditional
software. At this time, software packages developed by researchers themselves
play an important role in improving traditional software limitations and pro-
moting new method applications. Many methodological articles are dedicated
to introducing newly developed SEM software packages. For example, Gonza-
les (2021), Rosseel (2012), and Igolkina and Meshcheryakov (2020) introduced
comprehensive SEM software packages JMP Pro, lavaan, and semopy, respec-
tively. Jiang et al. (2017) introduced the equivalence testing software package
equaltestMI, and Zhang et al. (2021) introduced the CFA model modification
software package blcfa.

8.3 Conclusion

Regarding frontier SEM methods, most work in domestic journals belongs to
tracking, introduction, or commentary and integration, lacking in-depth re-
search on the statistical properties of these methods. On the one hand, under-
standing of connections between methods is insufficient. Few studies attempt
to clarify mathematical relationships between competing methods (e.g., Fang et
al., in press; Wen & Liang, 2015), such as which methods are approximate or
even equivalent, or how different methods can be transformed through certain
changes. Such analyses are not uncommon abroad (Serang et al., 2019; Usami
et al., 2015, 2019; Yuan & Deng, 2021). Such analyses help deepen researchers’
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comprehensive understanding and mastery of methods. On the other hand,
there are also few simulation studies comparing methods. For example, foreign
simulation studies on fit indices have never stopped, including studies exploring
the impact of various non-fit factors (e.g., parameter estimation methods and
reliability) on fit index estimation (McNeish et al., 2018; Shi & Maydeu-Olivares,
2020) and studies comparing new fit indices with popular fit indices (Counsell
et al., 2020; Garnier-Villarreal & Jorgensen, 2020).

Despite these shortcomings, domestic SEM methodological achievements in the
past 20 years have still provided strong support for improving the level of do-
mestic quantitative research. It is believed that with the mutual promotion
between methodological research and application demands, there will be more
high-quality SEM methodological literature in the future.
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