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Abstract
This paper introduces big data psychology research methods in detail, using
Jiujiu Articles Network as a case study. Using text data collected from user
experiments, word frequency features are extracted to train machine learning
models, which are then utilized to predict the life satisfaction corresponding
to articles crawled from Jiujiu Articles Network, thereby helping beginners in
big data research gain an intuitive understanding of the entire processing work-
flow. Through concrete examples, this paper introduces the use of Python and
sentiment dictionaries for text word frequency calculation, employs the scikit-
learn library to complete training, testing, and application of machine learning
models, and combines this with accompanying source code to facilitate direct
operation by readers. This paper preliminarily introduces a big data research
methodology based on machine learning modeling of text word frequencies; the
technical introduction is relatively fundamental, primarily emphasizing how to
apply the techniques, with less coverage of technical principles.
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Abstract

This paper provides a detailed introduction to big data research methods in
psychology, using the Ninety-Nine Articles website as a case study. We col-
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lected textual data through user experiments, extracted word frequency features,
trained machine learning models, and then applied these models to predict life
satisfaction scores for articles crawled from the Ninety-Nine Articles website.
This approach offers beginners in big data research an intuitive understanding
of the entire processing pipeline. Through concrete examples, we demonstrate
how to use Python and sentiment dictionaries for text-based word frequency
calculation, utilize the scikit-learn library for machine learning model training,
testing, and application, and provide accompanying source code for hands-on
practice. This article introduces a foundational big data research methodol-
ogy based on text word frequency and machine learning modeling, emphasizing
practical application over technical principles.

Keywords: big data, word frequency, machine learning, Python

1. Introduction
With the continuous development of information technology, the massive
amounts of data generated through internet usage have become one of our most
valuable assets. Data now permeates every aspect of our lives and grows at an
exponential rate, ushering us into the era of big data [1]. Big data has spread
across all sectors of society, influencing our learning, work, daily life, and social
development, while also providing researchers with unprecedented convenience
[2-3].

As one of the primary carriers of massive data, the internet contains vast quan-
tities of underutilized information waiting to be mined for valuable insights.
Python, as a programming language closest to natural language, is relatively
easy to learn and has become a powerful tool for effective data mining. As an
object-oriented programming language, Python offers rich libraries and applica-
tion programming interfaces (APIs) that meet the diverse needs of data mining
and analysis on web platforms, enabling efficient searching, storage, and dis-
play of massive datasets [4]. Song Tian and Huang Tianyu argue that Python
is more suitable than traditional teaching languages such as C++ and VB for
non-computer science students, offering broader pedagogical applications [6].
Zheng Jiming notes that Python’s simplicity, extensive class libraries, and ex-
cellent scalability and portability make it ideal for cultivating computational
thinking [7]. By October 2021, Python had surpassed C and Java to become
the top-ranked language on the TIOBE index.

In the context of the big data era, Python is undoubtedly a powerful assis-
tant for big data research. Considering the current state of Python proficiency
among researchers, this paper uses real data to introduce a four-step process for
conducting big data psychology research with Python: (1) basic Python intro-
duction, (2) web scraping for data download, (3) Jieba tokenization and word
frequency statistics, and (4) machine learning model training, testing, and appli-
cation. Combined with the accompanying source code and data, this guide helps
readers gradually understand the key technologies involved in big data psychol-
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ogy research and gain practical experience by running the programs. Many of
these processing procedures can also be directly applied to readers’own research
projects.

2. Python Overview
Python is a simple, highly visual programming language that is easy to learn
yet powerful. It features efficient high-level data structures and enables simple
yet effective object-oriented programming. With its concise syntax and support
for dynamic input, Python is an interpreted language that serves as an ideal
development language across numerous platforms and domains.

Python is free, open-source, and highly portable, capable of running on Unix-
derived systems, Win32 systems, handheld platforms (PDAs/mobile phones),
and even gaming consoles (PSP). It boasts an extensive standard library cov-
ering regular expressions, documentation generation, unit testing, threading,
databases, web browsers, and machine learning, among others. Additional high-
quality libraries such as wxPython, Twisted, and various image libraries further
extend its capabilities.

Python can be downloaded and installed from the official website: http://www.python.org.
Most Unix-derived systems come with Python pre-installed; typing “python”
in the command line will display version information. Installation is straight-
forward and similar to other software, with numerous open tutorials available
online. Popular Python programming resources include:

• W3School Online Tutorial: https://www.w3school.com.cn/python/index.asp
• A Byte of Python: https://www.woodpecker.org.cn/abyteofpython_{cn}/chinese/
• Python3 Tutorial: https://www.runoob.com/python3/python3-

tutorial.html
• Woodpecker Community: https://wiki.woodpecker.org.cn/moin/

3. Python Programming Basics
In Python programming, data types are fundamental concepts. Variables can
store different types of data, and different types support different operations.
Python has six standard data types: Number, String, List, Tuple, Set, and
Dictionary. Immutable data types include Number, String, and Tuple, while
mutable types comprise List, Set, and Dictionary.

Basic Data Types: Numbers

Table 1: Python Basic Data Types

Type Description
int (integer) Positive integers, zero, and negative integers
float (floating-point) All numbers containing decimal points
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Type Description
bool (Boolean) Only two values: True and False, representing truth

values
complex (complex
number)

Real numbers plus imaginary numbers; any number
with an imaginary component (e.g., 3j)

String Any characters enclosed in quotes, such as “123”or
‘hello’

List Accessible, modifiable, ordered; forward indexing: 0,
1, 2, 3⋯; reverse indexing: -1, -2, -3⋯

Tuple Accessible but not modifiable, ordered; indexing
same as List

Set Unordered, unmodifiable, automatically
deduplicated

Dictionary (dict) Stores data as key-value pairs; values accessed and
modified via keys

The type() function returns the data type of any object, while the print()
function outputs results (see prog\simp-1-hello-world.py).

Python operators perform operations on variables and values, including arith-
metic, assignment, comparison, logical, identity, membership, and bitwise opera-
tors (see prog\simp-5-exp.py). The if statement controls program execution,
using the if keyword to specify a condition. When the condition evaluates
to true, the subsequent indented statements execute. The elif keyword ex-
presses “if the previous condition was not true, then try this condition,”while
the else keyword catches all cases not captured by previous conditions (see
prog\simp-6-ifelse.py).

The while statement loops through program execution, repeating a code
block while a condition remains true to handle repetitive tasks (see
prog\simp-7-while.py). Within while loops, the break statement ter-
minates the loop even when the condition is true, while continue skips the
current iteration and proceeds to the next.

The for loop iterates over sequences (lists, tuples, dictionaries, sets, or strings),
which can be indexed from 0 to less than the sequence length and can be sliced
(see prog\simp-9-for.py). Within for loops, break terminates the loop before
iterating through all items, continue stops the current iteration and proceeds
to the next, and the else keyword specifies a code block to execute when the
loop completes.

Functions are code blocks that run only when called, can receive data (parame-
ters) in parentheses following the function name, and can return data as results.
Functions must be defined before being called (see prog\simp-4-function.py).
In Python, the def keyword defines functions, which are invoked by following
the function name with parentheses.
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4. Web Scraping for Data Download
Web crawlers are programs that automatically extract web page information
according to specified rules by simulating human operations. This section intro-
duces the workflow of web crawling technology and explains the Python-based
web data download process through practical cases.

Traditional crawlers begin with one or several initial webpage URLs, obtain
URLs from these pages, and continuously extract new URLs from current pages
into a queue until certain stopping conditions are met. As shown in Figure 1,
the basic web crawler workflow is: (1) select one or more seed URLs; (2) place
seed URLs into the pending queue; (3) sequentially retrieve URLs from the
queue, resolve DNS to obtain the server IP, download and save the webpage to
a database, then move the URL to the crawled queue; (4) analyze crawled URLs
to extract additional URLs and return them to the pending queue, continuing
the cycle [5].

Using the Ninety-Nine Articles website as an example, we crawl article titles
and content from http://www.99wenzhangwang.com/article/18491.html, saving
them to local text files. This case uses Python 3.8, with complete code in
prog\www-9-99wz-sample.py. Web data download involves four steps: data
acquisition, parsing, extraction, and storage.

The crawler initiates requests to servers based on provided URLs and returns
data. Data acquisition uses the requests library, which can download webpage
source code, text, images, and even audio. Since requests is not a Python stan-
dard library, install it via terminal: pip install requests (use pip3 on Mac).
The get() method sends requests to servers, which return HTML document
packets. Sample code:

import requests
from bs4 import BeautifulSoup

r = requests.get('http://www.99wenzhangwang.com/article/18491.html')
r.encoding = r.apparent_{encoding}

HTML (Hypertext Markup Language) is the standard markup language for
creating webpages. Markup languages combine text with related information
such as size, height, color, and position. As shown in Figure 2, HTML has a clear
hierarchical structure like Python, with three fundamental elements: the html
element (<html></html>), head element (<head></head>), and body element
(<body></body>). The head typically sets webpage encoding, logos, titles, and
external file references, while the body defines all content within the webpage
window and is our primary focus. Tags enclosed in angle brackets (<> and </>)
mark text information, with attributes like align and style defining element
appearance. We locate desired data using tag names and attribute values.

Webpage parsing methods include regular expressions, BeautifulSoup, and lxml,
each with distinct characteristics. This case uses BeautifulSoup, which requires
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separate installation. BeautifulSoup parsing requires two parameters: the text
to parse (must be a string) and the parser identifier (we use Python’s built-in
html.parser):

soup = BeautifulSoup(r.text, 'html.parser')

After parsing the webpage into a BeautifulSoup object, we locate desired data
using tags and attributes. The SelectorGadget plugin for Chrome helps identify
tags (see software\chrome\install.pdf for installation). After identifying
tags, use find() and find_{all}() methods to extract data. find() returns
the first matching item, while find_{all}() returns all matches as a list requir-
ing iteration:

title = soup.find('h2')
contents = soup.find(class_='hl_{body}').find_{all}('p')
content = ""
for para in contents:

if len(para) > 0:
content += para.text

After extraction, data must be stored. Storage options include plain text files
(txt, csv, Excel) or databases (MySQL). This case writes crawled data to text
files through three steps: open, write, and close:

file = open('99wenzhang.txt', 'w', encoding='utf8')
file.write(title.text)
file.write('\n')
file.write(content)
file.close()

The saved result is shown in Figure 4. Similar methods can build site-specific
crawlers: seven Python programs (prog\www-1~7-*.py) progressively introduce
crawlers for the Institute of Psychology, Chinese Academy of Sciences announce-
ment board, while prog\www-8-99wzsave.py downloads articles from specific
Ninety-Nine Articles categories.

5. Jieba Tokenization and Word Frequency Statistics
A critical challenge in applying machine learning to textual data is obtaining
suitable input features. Raw text is typically represented as character strings,
but machine learning models generally cannot process character data directly,
and variable text lengths conflict with the fixed-dimensional input requirements
of most models. Therefore, raw text must be processed to obtain numerical
features. The main processing techniques and workflow are shown in Figure 5.

The conversion process begins with text preprocessing. The first step is text
cleaning, which removes or replaces useless symbols like spaces that would in-
terfere with tokenization and word frequency statistics. The second step is
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tokenization—splitting continuous character sequences into semantically inde-
pendent word sequences according to specific rules. While English uses spaces
as natural delimiters, Chinese lacks formal word boundaries, making Chinese
tokenization challenging. However, multiple technologies and tools now address
this, including Jieba for Python (see prog\jieba-1-seg.py).

The final preprocessing step is stop word removal (see prog\jieba-2-stopwords.py).
Stop words are typically excluded from frequency statistics, usually comprising
prepositions, auxiliary words, or adverbs in Chinese. Stop word lists vary
depending on the task objectives.

After preprocessing, text must be converted to numerical representation through
text modeling, which has three main approaches: vector space models, neural
network embedding models, and topic models. Vector space models represent
text as points in vector space, focusing on feature selection and weight calcula-
tion. Neural network embedding models use deep learning to map discrete text
variables to continuous numerical vectors. Topic models are statistical models
that cluster latent semantic structures in text through unsupervised learning.
Word frequency statistics can be considered a simplified vector space model that
uses a predefined dictionary to analyze word frequencies, generating frequency
vectors for direct use in supervised learning or statistical analysis.

This section uses articles crawled from Ninety-Nine Articles as raw data, apply-
ing the Dalian University of Technology Emotion Dictionary and Weibo Basic
Emotion Lexicon for tokenization and frequency statistics. The Dalian dic-
tionary contains 21 word categories including happiness, peace, and respect,
while the Weibo lexicon includes five categories: happiness, sadness, anger,
fear, and disgust. First, we define identifiers for different word categories (see
prog\swls-2-jieba-affect-export.py):

affect_{col}_{list} = ['PA', 'PE', 'PD', 'PH', 'PG', 'PB', 'PK', 'NA', 'NB', 'NJ', 'NH', 'PF', 'NI', 'NC', 'NG', 'NE', 'ND', 'NN', 'NK', 'NL', 'PC', 'MH', 'MS', 'MA', 'MD', 'ME', 'P', 'N', 'Ne']

Before Jieba tokenization and frequency statistics, we must load the dictionary
files and stop word lists:

def load_{affect}_{dict}(filepath):
m_{affectdict} = []
for m_{col} in affect_{col}_{list}:

m_{col} = []
m_{affectdict}.append(m_{col})

for m_{line} in open(filepath, 'r', encoding='utf-8').readlines():
m_{line} = m_{line}.strip()
kwd = m_{line}.split('\t')[0].strip()
col = m_{line}.split('\t')[1].strip()
m_{affectdict}[affect_{col}_{list}.index(col)].append(kwd)

return m_{affectdict}

affect_{dict}_{file} = '../data/dict-affect.txt'
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affect_{dict} = load_{affect}_{dict}(affect_{dict}_{file})
jieba.load_{userdict}('../data/jieba_{load}_{affect}_{dict}.txt')

Stop word loading:

def load_{stopwords}(filepath):
m_{stopwords} = [line.strip() for line in open(filepath, 'r', encoding='utf-8').readlines()]
return m_{stopwords}

stop_{word}_{file} = '../data/stop_{words}_{cn}.txt'
stopwords = load_{stopwords}(stop_{word}_{file})

After loading Chinese stop words and the emotion dictionaries, Jieba performs
tokenization and stop word removal, then counts frequencies for different word
categories, generating emotion dictionary frequency vectors for each text:

def read_{swls}_{file}(fname):
fr_{swls} = open(fname, 'r', encoding='UTF-8-sig')
x_{swls}_{strs} = fr_{swls}.readlines()
fr_{score} = int(x_{swls}_{strs}[0].strip('\n'))
fr_{gender} = x_{swls}_{strs}[1].strip('\n')
fr_{desc} = ''
x_{swls}_{strs}.pop(0)
x_{swls}_{strs}.pop(0)
for swls_{str} in x_{swls}_{strs}:

fr_{desc} += swls_{str}.strip().strip('\n') + ' '
fr_{swls}.close()
return fr_{score}, fr_{gender}, fr_{desc}

for fdata in swls_{files}:
x_{score}, x_{gender}, x_{desc} = read_{swls}_{file}(swls_{dir} + fdata)
str_{export} = str(x_{score}) + ','
if (x_{gender} == 'M') or (x_{gender} == 'm') or (x_{gender} == '男'):

str_{export} += '0'
else:

str_{export} += '1'
for idx, g_{col} in enumerate(affect_{col}_{list}):

r_{affect} = cntkws_{jieba}_{seg}_{wrds}(x_{desc}, affect_{dict}[idx])
str_{export} += ',' + str(r_{affect})

dstfp.write(str_{export} + '\n')
dstfp.flush()

dstfp.close()

Each text is thus converted into a numerical vector of consistent dimensions,
where each dimension carries linguistic meaning, enabling subsequent supervised
learning or statistical analysis.
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6. Machine Learning Model Training, Testing, and Appli-
cation
Machine learning methods can uncover hidden patterns in large datasets and
predict future inputs based on these patterns. Machine learning models divide
into supervised and unsupervised learning (see prog\ml-1-kmeans.py). Com-
mon supervised models include classification (see prog\ml-5-svm.py) and re-
gression (see prog\ml-4-svr.py). Using prog\ml-5-svm.py as an example, we
introduce the main processes of model training and application:

from sklearn import svm

training_x = [[0, 0], [1, 1], [3, 2], [2, 2]]
training_y = [0, 1, 2, 1]
clf = svm.SVC(gamma='scale')
clf.fit(training_x, training_y)

testing_x = [[2, 2], [1, 2]]
result = clf.predict(testing_x)
print("Predict: ", result)

Generally, predicting new samples requires first training a model. Training data
comprises independent variables (features) and dependent variables (labels) for
each sample. Features may be multiple, forming a feature vector, while depen-
dent variables are called annotations or outputs. Model training teaches the
computer the mapping between independent and dependent variables, enabling
prediction of new samples’outputs from their inputs alone.

The above illustrates basic training and prediction, but supervised learning
practice typically involves four stages: training, testing, saving, and import-
ing/application. Training and testing involve debugging different algorithms on
data to find optimal performance, including feature extraction, selection, model
training, and performance evaluation. This process is iterative—test results can
inform adjustments to any previous step. For performance testing, data is ran-
domly split into non-overlapping training and test sets. Models train on the
training set and are evaluated on the test set. Based on results, appropriate
algorithms and parameters are selected, final models are trained on the full
dataset and saved for future import and application.

Using life satisfaction prediction as an example, we need participants’self-
descriptive texts and life satisfaction scores (collected via questionnaire; see
data\生活满意度练习.pdf). We treat self-descriptions as input variables and ques-
tionnaire scores as dependent variables, aiming to build a model that predicts
life satisfaction from text. Through word frequency statistics, we extract tex-
tual features as independent variables and life satisfaction scores as dependent
variables. prog\swls-5-train-save.py uses emotion dictionaries for feature
extraction (see Section 5 for details). The code assigns individual word fre-
quency features to x_{kws} and life satisfaction scores to y_{score}:
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x_{kws} = []
y_{score} = []
dirs = '../data/swls/'
subdir = os.listdir(dirs)
for f in subdir:

x_{score}, x_{gender}, x_{desc} = read_{swls}_{file}(dirs + f)
item = feature_{extraction}(x_{desc})
x_{kws}.append(item)
y_{score}.append((x_{score} - 5) / 30)

Python’s scikit-learn library is an open-source machine learning module
(https://scikit-learn.org.cn/) offering various classification, regression, and
clustering algorithms. It enables model training through simple function
calls, reducing mathematical and computational requirements. Model training
involves two steps: specifying the model and fitting it to training data. Using
LassoCV as an example:

clf_{lasso} = LassoCV()
clf_{lasso}.fit(x_{kws}, y_{score})

This basic training process must be extended because different algorithms and
hyperparameters produce varying performance. Test sets, containing both input
data and true values, evaluate model performance. The correlation coefficient
between predictions and true values indicates performance—higher correlations
are better. In the life satisfaction project, prog\swls-3-train-test-score.py
implements model testing. Using Lasso regression as an example, the program
trains on the training set, predicts life satisfaction from test set word frequencies,
and calculates the correlation coefficient:

clf_{lasso} = LassoCV()
clf_{lasso}.fit(training_x, training_y)
result = clf_{lasso}.predict(testing_x)
ab = np.array([testing_y, result])
print('Lasso: ', np.corrcoef(ab))

By comparing different hyperparameter settings on the test set, we select the
best-performing model, train the final model on all data, and export it for future
use. prog\swls-5-train-save.py saves the trained model:

mod_{file} = '../data/swls.mod'
joblib.dump(clf_{lasso}, mod_{file})
print('SWLS model saved!')

After model creation and export, we can predict life satisfaction for new texts.
Using Ninety-Nine Articles texts as examples, we extract features and make
predictions. After obtaining word frequency features, we load the saved model
and predict satisfaction scores, implemented in prog\swls-6-99wz-apply.py:

testdirs = '../data/99wz/'
testsubdir = os.listdir(testdirs)
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apply_{kws} = []
wz_{list} = []
for f in testsubdir:

buf = open(testdirs + f, 'r', encoding='utf-8').read()
item = feature_{extraction}(buf)
apply_{kws}.append(item)
wz_{list}.append(f)

mod_{file} = '../data/swls.mod'
clf = joblib.load(mod_{file})
result = clf.predict(apply_{kws})
print(result)

7. Conclusion
This paper introduced the main processes of conducting big data psychology
research using Python, using life satisfaction prediction from Ninety-Nine Arti-
cles as a case study to demonstrate the complete workflow of text-based word
frequency machine learning modeling. Building on these techniques, researchers
can investigate topics such as internet users’sleep patterns [2] and coming-out
decisions among sexual minorities [3]. Researchers can use web scraping for
targeted data collection, combine Jieba tokenization with existing dictionaries
for text feature extraction, and employ supervised machine learning algorithms
through Python to build and save models for automatic prediction of psycho-
logical indicators, enabling broader psychological research applications.
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