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Abstract

The emergence and widespread adoption of neural networks have significantly
advanced research in pattern recognition and data mining. In recent years,
graph neural networks have attracted increasing attention. They have found
applications in various domains, including text classification, sequence label-
ing, neural machine translation, relation extraction, and image classification.
This review primarily synthesizes existing research on semi-supervised and un-
supervised graph neural networks. The research contributions of this paper
are organized into three categorical dimensions: research problems, method-
ological approaches, and evaluation metrics. The primary research challenges
addressed include low-dimensional node representation learning in graphs and
the oversmoothing problem during message propagation. The methodological
focus centers on graph embedding algorithms, encompassing both probabilistic
graph-based approaches and deep learning-based techniques. The evaluation
methodologies primarily assess the accuracy and computational efficiency of the
proposed algorithms and models. Finally, this paper proposes viable directions
for future research, providing valuable references for readers.
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Abstract: The rise and application of neural networks has significantly ad-
vanced research in pattern recognition and data mining. In recent years, graph
neural networks have attracted increasing attention, with applications span-
ning text classification, sequence annotation, neural machine translation, rela-
tion extraction, image classification, and other domains. This survey integrates
existing research on semi-supervised and unsupervised graph neural networks,
organizing contributions along three dimensions: research problems, method-
ological approaches, and evaluation measures. The primary research challenges
addressed are the low-dimensional representation of graph nodes and the over-
smoothing problem that occurs during message propagation. Methodologically,
the literature focuses on graph embedding algorithms, including both proba-
bility graph-based approaches and deep learning-based techniques. Evaluation
efforts primarily concentrate on the accuracy and efficiency of these algorithms
and models. Finally, this paper identifies promising future research directions
to guide readers in this rapidly evolving field.

Keywords: Graph neural network, unsupervised learning, network embedding,
node clustering

1 Introduction

Graphs, also known as networks, represent a ubiquitous data structure that per-
meates daily life, manifesting in social networks, the World Wide Web, and nu-
merous other domains. The advent and widespread adoption of neural networks
have revolutionized pattern recognition and data mining, transforming tradi-
tionally feature engineering-intensive tasks such as object detection, machine
translation, and speech recognition through end-to-end deep learning paradigms
including Convolutional Neural Networks (CNN), Long Short-Term Memory
(LSTM), and autoencoders. Graph Neural Networks (GNNs) constitute a class
of connectionist models that capture dependencies within graphs through infor-
mation propagation between nodes. While most GNNs are specifically designed
for semi-supervised learning tasks (both transductive and inductive), where la-
beled nodes provide crucial supervisory signals, this reliance on supervision
presents fundamental limitations. First, for unsupervised tasks such as node
clustering and link prediction, supervised information is unavailable, and most
existing unsupervised GNNs either reconstruct original information (adjacency
and attribute matrices) or maximize mutual information to preserve as much
data as possible. Consequently, the over-smoothing problem tends to be more
severe in unsupervised GNNs compared to their semi-supervised counterparts.
Second, although learning message aggregation from labeled nodes can mitigate
smoothing issues, it often leads to serious over-fitting that severely impacts
performance.

Through comprehensive literature review and analysis, we first examine the
research objectives across various studies, finding that some focus on the low-
dimensional representation of nodes in complex graphs while others analyze
the over-smoothing problem during information propagation. We then investi-
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gate methodological approaches, revealing that most literature centers on graph
embedding algorithms—some employing probability graph-based methods and
others leveraging deep learning techniques. Additionally, we find that while
many studies address semi-supervised and unsupervised graph neural networks,
fully supervised approaches remain less common. Finally, we analyze evaluation
methodologies, identifying works that measure classification accuracy and oth-
ers that assess computational efficiency. By synthesizing these methodological
and evaluative perspectives, we identify the distinctive characteristics and inno-
vations of each contribution, and based on our analysis, propose future research
directions and optimization opportunities for graph neural networks.

The remainder of this paper is organized as follows. Section 2 presents the
classification of research objects in unsupervised graph neural networks. Section
3 discusses the classification of research methods. Section 4 reviews experimental
analyses and comparisons in the literature. Section 5 explores future research
opportunities, and Section 6 concludes the paper.

2 Classification of Research Objects

In recent years, graph neural networks have attracted considerable scholarly
attention, with research spanning numerous domains. To clarify this landscape,
we classify graph neural network studies using two distinct criteria: (1) network
architecture type and (2) research topic focus.

Network Architecture Types: We identify three primary categories: graph
convolutional networks, graph neural networks, and generative adversarial net-
works. Most existing graph neural networks are designed for semi-supervised
tasks because supervised information can alleviate the over-smoothing problem
during message propagation. Both graph convolutional networks and graph
neural networks can learn low-dimensional node representations through graph
embedding.

Research Topics: We distinguish two fundamental problems: low-dimensional
node representation and over-smoothing during information transfer. Graph em-
bedding aims to represent each node as a low-dimensional vector for downstream
tasks. In semi-supervised learning, supervised information helps mitigate over-
smoothing in message delivery. Unfortunately, due to the absence of such infor-
mation, the over-smoothing problem becomes more acute in unsupervised tasks.
Consequently, over-smoothing affects graph convolutional networks and gener-
ative adversarial networks, while low-dimensional representation challenges are
present in both graph convolutional networks and general graph neural net-
works.

Based on these classification standards, we present the taxonomy in Table 1,
with each category defined as follows:

Type I: Studies the low-dimensional representation of nodes in graph convolu-
tional neural networks through graph embedding algorithms that learn repre-
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sentations in complex networks.

Type II: Investigates low-dimensional node representation in graph neural net-
works.

Type III: Addresses low-dimensional node representation in generative adver-
sarial networks.

Type IV: Examines over-smoothing problems in information transfer within
graph convolutional networks.

Type V: Studies over-smoothing issues in information transfer within graph
neural networks.

Type VI: Focuses on over-smoothing problems in information transfer within
graph generative networks.

Explanation of Different Types: References [9][15][19] belong to Type I. Ref-
erence [9] proposes methods to effectively capture and measure affinity relation-
ships between nodes while learning low-dimensional representations of attributes
and nodes in a unified semantic space. To obtain high-quality embeddings, it
introduces a variational autoencoder that embeds Gaussian distributions char-
acterized by mean and variance for each node and attribute. Reference [15]
presents Deep Graph Infomax (DGI), a general approach for unsupervised learn-
ing of node representations in graph-structured data. DGI maximizes mutual
information between patch representations and corresponding high-level graph
summaries, both derived from established graph convolutional network architec-
tures. Reference [19] explores Jumping Knowledge (JK) networks, which flex-
ibly leverage different neighborhood ranges for each node to achieve improved
structure-aware representations.

References [1][3] belong to Type II. Reference [1] introduces GraRep, a model
for learning weighted graph vertex representations through low-dimensional vec-
tors that integrate global structural information—addressing limitations of ex-
isting methods that cannot capture diverse connection patterns. Reference [3]
proposes Node2vec, an algorithmic framework for learning continuous feature
representations of nodes that maximizes preservation of network neighborhoods
through a biased random walk process.

References [8][13][7] belong to Type IV. Reference [8] demonstrates that graph
convolution in GCN models is a special form of Laplacian smoothing, which
enables GCN performance but also introduces over-smoothing problems in deep
architectures. To overcome shallow architecture limitations, it proposes co-
training and self-training methods for GCNs. Reference [13] introduces DropE-
dge, a novel technique that alleviates over-smoothing and over-fitting by ran-
domly removing edges at each training stage, functioning as both data augmen-
tation and message deceleration. The paper theoretically proves that DropEdge
can slow over-smoothing convergence and mitigate information loss, serving as a
general enhancement for various backbone models. Reference [7] derives an im-
proved propagation scheme based on personalized PageRank, establishing a rela-
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tionship between GCN and PageRank. This scheme constructs the Personalized
Propagation of Neural Predictions (PPNP) model and its fast approximation,
APPNP.

Reference [16] belongs to Type VI. It proposes a framework addressing atten-
tional limitations in graph attention networks and over-smoothing on decision
boundaries. The work first theoretically proves GAT’ s over-smoothing behav-
ior, then develops constrained attention weights based on class boundaries and
feature aggregation patterns, with additional graph structure constraints to al-
leviate over-fitting.

3 Classification of Research Methods

Most existing graph neural networks are designed for semi-supervised learn-
ing tasks using deep learning, where supervised information mitigates over-
smoothing. We classify research methods using two independent criteria: (1)
machine learning paradigm and (2) graph embedding algorithm type.

Machine Learning Paradigms: We consider three categories: semi-
supervised learning, unsupervised learning, and supervised learning. While
many Al methods exist, graph neural network research predominantly employs
machine learning, with semi-supervised approaches being most common be-
cause supervised information alleviates over-smoothing. This paper examines
all three paradigms.

Graph Embedding Algorithms: We identify two approaches: probability
model-based and deep learning-based methods. The literature employs these
distinct graph embedding algorithms for graph clustering, providing another
important distinguishing criterion.

Based on these classification standards, we present the taxonomy in Table 2,
with each category defined as follows:

Type I: Addresses over-smoothing in semi-supervised graph neural networks
using probability graph model-based embedding methods.

Type II: Tackles information transfer flatness in unsupervised graph neural
networks using probability graph model-based embedding methods.

Type III: Overcomes information transfer challenges in fully supervised graph
neural networks using probability graph model-based embedding methods.

Type IV: Mitigates over-smoothing in semi-supervised graph neural networks
using deep learning model-based embedding methods.

Type V: Addresses over-smoothing in unsupervised graph neural networks us-
ing deep learning model-based embedding methods.

Type VI: Overcomes over-smoothing in fully supervised graph neural networks
using probability graph model-based embedding methods.
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Explanation of Different Types: References [15][10][11] belong to Type I.
Reference [15] proposes Deep Graph Infomax (DGI), an unsupervised method
for learning node representations in graph-structured data by maximizing mu-
tual information between patch representations and high-level graph summaries
derived from graph convolutional architectures. The learned patch representa-
tions summarize node-centered subgraphs for downstream tasks. Reference [10]
introduces DeepWalk, which translates advances in language modeling and un-
supervised feature learning to graphs by treating truncated random walks as
sentences to learn latent representations from local information. Reference [11]
employs Graphical Mutual Information (GMI) to measure correlations between
input graphs and high-level hidden representations, extending traditional mu-
tual information calculation from vector spaces to graph domains. GMI mea-
sures mutual information through node characteristics and topological struc-
ture while maintaining invariance to isomorphic transformations—an essential
constraint in graph representation learning.

References [3][20] belong to Type II. Reference [3] presents Node2vec, which
learns mappings from nodes to low-dimensional feature spaces that maximize
preservation of network neighborhoods through a flexible biased random walk
process. Reference [20] proposes a semi-supervised learning framework based on
graph embedding with transductive and inductive variants that jointly predict
class labels and neighborhood context. The transductive variant determines
labels from learned embeddings and input features, while the inductive variant
defines embeddings as parametric functions of feature vectors, enabling predic-
tion for unseen instances.

Reference [1] belongs to Type III, proposing GraRep for learning weighted graph
vertex representations through low-dimensional vectors that incorporate global
structural information.

Reference [12] belongs to Type IV, introducing an adversarial graph data em-
bedding framework that encodes topological structure and node content into
compact representations. It trains decoders to reconstruct structural composi-
tions and matches latent representations to prior distributions through adversar-
ial training, developing Adversarially Regularized Graph Autoencoder (ARGA)
and Adversarial Variational Graph Autoencoder (ARVGA).

References [9][4][7] belong to Type V. Reference [9] proposes a Collaborative At-
tributed Network (CAN) model that co-embeds attributes and nodes in the same
semantic space to capture their similarity, using a variational autoencoder with
Gaussian distribution embedding. Reference [4] addresses community structure
detection, where network nodes cluster tightly with loose inter-group connec-
tions, proposing a method using centrality indices to identify community bound-
aries. Reference [7] derives PPNP and APPNP from the relationship between
GCN and personalized PageRank, as previously described.
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4 Review of Experimental Analysis

This section classifies evaluation metrics and system parameters, as shown in
Table 3, which organizes experimental analyses according to these dimensions.
Most references compare algorithmic superiority and effectiveness.

4.1 Metric of Evaluation

Accuracy measures the proportion of correctly classified nodes relative to ac-
tual classifications in social networks, calculated as:

Accuracy = Number of correctly categorized nodes / Number of actually cate-
gorized nodes

Efficiency refers to the time complexity of an algorithm or model being lower
than existing alternatives, expressed as:

T(n) = O(f(n))

Other metrics include Macro-F1 Score, Micro-F1 Score, and Normalized Mu-
tual Information (NMI).

4.2 System Parameters

Algorithm refers to the method used for node classification in social networks.
Algorithms with lower time complexity enable more accurate node division than
existing methods, though semi-supervised graph neural networks can mitigate
certain limitations through supervised information.

Model denotes the architecture employed for node classification, where different
models achieve varying effectiveness across problems. Additional parameters
include experimental configurations for graph neural networks and comparative
studies with existing models.

4.3 Experimental Comparison

Reference [15] evaluates its method on synthetic networks, reporting average
classification accuracy (with standard deviation) at test nodes after 50 train-
ing sessions followed by logistic regression, demonstrating DGI’ s high accuracy.
Reference [8] conducts extensive experiments on real benchmarks to validate its
theory and methods, including joint training, self-training combinations, and
cross-experiments, showing high accuracy in GCN node classification. Refer-
ence [6] evaluates BTLSC community detection performance across nine real-
world networks with ground-truth communities, demonstrating high node clas-
sification accuracy. Reference [13] tests its model with 2, 8, and 32 layers on
different datasets, showing DropEdge improves test accuracy. Reference [11]
compares its method with other unsupervised approaches, with GMI-Mean and
GMI-Adaptive achieving best classification accuracy across three datasets—ben-
efiting from encoded representations that maximally preserve node features and
topology.
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Reference [1] experiments on clustering, classification, and visualization tasks
across three graph types, showing GraRep effectively integrates different k-step
local relation information into global graph representations for diverse appli-
cations. Reference [14] compares its LINE model with several scalable graph
embedding methods on large networks, demonstrating LINE (second-order) out-
performs DeepWalk’ s combination of first and second-order proximity on orig-
inal networks in most cases, capturing most information as a highly effective
and efficient method for both dense and sparse networks. Reference [7] exper-
iments on GCN, N-GCN, GAT, BootStrapped Feature Propagation, and JK
models, showing its PPNP model achieves high node classification accuracy.
Reference [20] demonstrates its semi-supervised learning framework based on
graph embedding achieves high accuracy in text classification compared to ex-
isting methods. Reference [17] evaluates its SGC model on Cora, Citeseer, and
Pubmed datasets, showing better performance on Citeseer due to fewer param-
eters and reduced over-fitting. Reference [2] tests dual-Sinkhorn on the MNIST
dataset, demonstrating high efficiency and low time complexity.

5 Discussion and Suggestion

Our analysis reveals that most graph neural network research targets semi-
supervised tasks because supervised information can mitigate message smooth-
ing problems. However, the over-smoothing problem becomes more severe in
unsupervised settings where no supervision is available. Therefore, unsuper-
vised graph neural network research represents an important direction. Deep
learning has undoubtedly become the preferred methodology, yet most graph
neural network research employs supervised and unsupervised graph embedding
algorithms, with few studies investigating fully supervised deep learning-based
methods. We propose the following future research directions:

1) Investigate low-dimensional node representation in graph attention net-
works using deep learning-based graph embedding algorithms, evaluated
through node classification accuracy.

2) Conduct in-depth comparative studies on the accuracy and efficiency of
various practical methods to identify optimal approaches for different prob-
lem domains.

Conclusions

Our analysis indicates that most graph neural network research focuses on semi-
supervised learning tasks, while the over-smoothing problem in message deliv-
ery becomes more pronounced in unsupervised settings. Future work should
further investigate graph neural networks in unsupervised modes, particularly
deep learning-based graph embedding algorithms for learning low-dimensional
representations in graph attention networks—an area currently underexplored.
Such research methodologies warrant deeper investigation.
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Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv —Machine translation. Verify with original.
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