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Abstract

The paper proposes a statistical fields theory of quantum reference frame under-
lying the Perelman’ s analogies between his formalism of the Ricci flow and the
thermodynamics. The theory is based on a d = 4 — ¢ quantum non-linear sigma
model (NLSM), interpreted as a quantum reference frame system which a to-be-
studied quantum system is relative to.The statistic physics and thermodynamics
of the quantum frame fields is studied by the density matrix of them obtained by
the Gaussian approximation quantization. The induced Ricci flow of the frame
fields and the Ricci-DeTurck flow of the frame fields associated with the density
matrix is deduced. In this framework, the diffeomorphism anomaly of the the-
ory has deep thermodynamic interpretation. The trace anomaly is related to
a Shannon entropy in terms of the density matrix, which monotonically flows
and achieves its maximal value at the flow limit,called the Gradient Shrinking
Ricci Soliton (GSRS). A relative Shannon entropy w.r.t. the maximal entropy
gives a statistical interpretation to Perelman’ s partition function, which is also
monotonic and giving an analogous H-theorem to the statistical frame fields
system. We find that a temporal static 3-space of the GSRS spacetime is in a
thermal equilibrium state, and Perelman’ s analogies between his formalism and
the thermodynamics of the frame fields in equilibrium can be explicitly given
in the framework. As a possible underlying microscopic theory of the gravita-
tional system, the theory is also applied to understand the thermodynamics of
the Schwarzschild black hole. The cosmological constant in the effective theory
of gravity at cosmic scale is also briefly given.

Full Text

Preamble

This paper proposes a statistical field theory of quantum reference frames un-
derlying Perelman’ s analogies between his Ricci flow formalism and thermody-
namics. The theory is based on a d = 4 — € quantum non-linear sigma model
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(NLSM), interpreted as a quantum reference frame system relative to which a
to-be-studied quantum system is defined. The statistical physics and thermody-
namics of the quantum frame fields are studied using a density matrix obtained
through Gaussian approximation quantization. The induced Ricci flow of the
frame fields and the associated Ricci-DeTurck flow are derived from this density
matrix. In this framework, the diffeomorphism anomaly of the theory possesses
a deep thermodynamic interpretation. The trace anomaly is related to a Shan-
non entropy expressed in terms of the density matrix, which flows monotonically
and achieves its maximal value at the flow limit, called the Gradient Shrinking
Ricci Soliton (GSRS), corresponding to a thermal equilibrium state of spacetime.
A relative Shannon entropy with respect to this maximal entropy provides a sta-
tistical interpretation of Perelman’ s partition function, which is also monotonic
and yields an H-theorem analogous to that for the statistical frame fields sys-
tem. A temporal static 3-space of a GSRS 4-spacetime is also a GSRS in lower
dimensions; we find that it is in a thermal equilibrium state, and Perelman’ s
analogies between his formalism and the thermodynamics of the frame fields
in equilibrium can be explicitly realized within this framework. Extending the
validity of the Equivalence Principle to the quantum level, the quantum refer-
ence frame theory at low energy yields an effective theory of gravity, recovering
a scale-dependent Einstein-Hilbert action plus a cosmological constant. As a
possible underlying microscopic theory of the gravitational system, the theory
is also applied to understand the thermodynamics of the Schwarzschild black
hole.

Introduction

Recent works [1, 2] have revealed possible relations between Perelman’ s for-
malism of the Ricci flow and fundamental problems in quantum spacetime and
quantum gravity, such as the trace anomaly and the cosmological constant prob-
lem. Perelman’ s seminal work (Section 5 of [3]) and further developments by
Li [4, 5] also suggest deep connections between the Ricci flow and thermody-
namic systems, encompassing both irreversible non-equilibrium and thermal
equilibrium thermodynamics of some underlying microscopic system. Perelman
introduced a partition function and his functionals without specifying what the
underlying microscopic ensemble actually is (in physics). Thus far, it remains
unclear whether these beautiful thermodynamic analogies are physical or mere
coincidences.

On the other hand, inspired by the surprising analogies between black holes and
thermodynamic systems, it is widely believed that black holes possess temper-
ature and entropy. Work along these lines has shown, in many respects, that
gravitational systems are profoundly related to thermodynamic systems (see the
recent review [6] and references therein). It is generally conjectured that there
exists some underlying statistical theory for the microscopic quantum degrees
of freedom of gravity, which has gradually become a touchstone for quantum
gravity.
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The motivations of this paper are, firstly, to propose an underlying statisti-
cal field theory for Perelman’ s seminal thermodynamic analogies of his Ricci
flow formalism, and secondly, to understand the possible microscopic origin of
spacetime thermodynamics, particularly for the Schwarzschild black hole. We
hope this work will advance understanding of the mysterious interplay between
Perelman’ s Ricci flow formalism and quantum spacetime and gravity. To our
knowledge, several tentative works have been devoted to this goal (see, e.g., [7-
10]), but frankly speaking, the physical picture underlying the Ricci flow re-
mains unclear without a fundamental physical theory underlying the Ricci flow
and a fundamental theory of quantum spacetime.

Building on our previous works [1, 2, 11-16] on quantum reference frames and
their relation to Perelman’ s Ricci flow formalism, we propose a statistical field
theory of the quantum reference frame as a possible underlying theory for Perel-
man’ s seminal analogies between his geometric functionals and thermodynamic
functions. In Section II, we review the theory of quantum reference frames
based on a d = 4 — ¢ quantum non-linear sigma model. At the Gaussian ap-
proximation quantization level, we obtain a density matrix of the frame fields
system as the physical foundation for the statistical interpretation of the theory.
The induced Ricci flow of the frame fields and the associated Ricci-DeTurck
flow are derived. In Section III, we discuss the diffeomorphism and related
trace anomaly of the quantum frame fields theory and its profound implications
for the irreversible non-equilibrium thermodynamics of the frame fields, includ-
ing the statistical entropy, an H-theorem for the frame fields, and the effective
gravity theory at cosmic scale (particularly the emergence of the cosmological
constant). In Section IV, the thermal equilibrium state of the frame fields as
a flow limit configuration (the Gradient Shrinking Ricci Soliton) is discussed,
where the density matrix recovers the thermal equilibrium canonical ensemble
density. This section provides a physical foundation for Perelman’ s seminal
thermodynamic analogies. In Section V, the framework is applied to provide a
possible microscopic understanding of the thermodynamics of the Schwarzschild
black hole. Finally, we summarize the paper and present conclusions in Section
VI

II. Quantum Reference Frame

The reference frame is one of the most fundamental notions in physics. Any
measurement in physics is performed or described with respect to a reference
frame that is always explicitly or implicitly used. In classical physics, the refer-
ence frame is idealized through classical rulers and clocks that label spacetime
coordinates, which are classical, external, and rigid without any fluctuations.
Even in textbook quantum mechanics or quantum field theory, the spacetime
coordinates remain classical. However, quantum principles tell us that all phys-
ical measuring instruments, including rulers and clocks, are inescapably subject
to quantum fluctuations. Such idealized and classical treatment of reference
frames works reasonably well in quantum mechanics and quantum field theory,
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largely because general coordinate transformations and gravitational effects are
not seriously taken into account. As expected, when quantum principles are
seriously applied to spacetime itself and gravitational phenomena, severe diffi-
culties arise, such as information loss (non-unitarity), diffeomorphism anomaly,
and the cosmological constant problem.

The quantum reference frame is a recurring theme in the literature (see, e.g., [17-
24] and references therein) based on various physical motivations, ranging from
quantum foundations to quantum information and quantum communication, to
quantum gravity. For example, in Ref. [17], the author suggests a general re-
lation between superselection rules and the lack of a reference frame. In Ref.
[20], it is shown more practically that extra assumptions about superselection
rules cannot be avoided from the viewpoint of quantum information and quan-
tum communication theory if local observers do not share common information
about their relative phase or Cartesian frames, etc. These extra assumptions
about superselection rules may also be viewed as a weakness of textbook quan-
tum mechanics, which can be overcome by introducing an appropriate quantum
reference frame. Many models (e.g., [18, 22, 23]) of quantum reference frames
and relational descriptions of the quantum system and the quantum reference
frame as a whole have been suggested in quantum foundations. In recent works
[24] and references therein, the authors review three approaches (relational Dirac
observables, the Page-Wootters formalism, and quantum deparameterizations)
to relational quantum dynamics and suggest their equivalence. Other authors
focus on the possible role of quantum reference frames in decoherence in quan-
tum gravity [21, 25]. Certainly, the list of works in this direction is far from
complete, which is beyond the scope and ability of the author.

Fundamentally, our work shares a similar philosophical viewpoint regarding the
role of quantum reference frames in quantum mechanics, such as the consider-
ation that an appropriate materialized (but idealized) reference frame obeying
the same laws of quantum mechanics must be taken into account, and that
in the full quantum theory a relational description based on entanglement be-
tween a quantum system and the quantum reference frame as a whole must
play a fundamental role. However, there are several important differences from
past literature. First, we do not simply or merely treat the quantum clock as
a quantum mechanical system ([23, 24]) (which is simpler and has fewer de-
grees of freedom to deal with, as discussed in most quantum reference frame
literature; in fact, our early work [11, 12] also started from an operational treat-
ment of quantum clocks to draw some general conclusions about vacuum energy
and the cosmological constant problem). In this paper, we place both quantum
space-rods and clock-time on an equal footing within the framework of quantum
statistical fields, making the theory more appropriate for incorporating gravity
under the assumption of a quantum version of the equivalence principle. In our
understanding, the quantum clock can be viewed as a first-step model and is
far from a complete theory. Second, based on the quantum spacetime reference
frame model (i.e., the d = 4 — € non-linear sigma model), our paper does not
treat the genuine relational quantities from the very beginning (as most liter-
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ature tends to announce), but rather we prepare the quantum frame fields of
reference in a laboratory frame (the d = 4 — € base spacetime of the non-linear
sigma model) as the starting reference, and then quantum events are defined
relative to the prepared quantum frame fields. In this sense, the framework
effectively assumes the existence of an external, classical, and rigid (free from
quantum fluctuations and with fixed volume) reference frame to serve as the
laboratory frame, since the non-linear sigma model allows us to assign quan-
tum states of spacetime reference (the target spacetime) to the base spacetime
to arbitrary precision. However, it can be easily verified that the theory is in-
dependent of the laboratory frame (metric, signature, etc.) in the non-linear
sigma model. The notion of an external and classical laboratory frame is merely
for convenience, since a quantum statistical field theory is historically (and per-
haps more appropriately) defined on an inertial frame (flat spacetime). Thus,
the relational quantities describing the relation between the quantum system
and the quantum spacetime reference system are essential in the framework.
Third, also due to the base spacetime independence of the non-linear sigma
model, whose Hamiltonian is trivial, the theory of spacetime reference frames is
more properly quantized using path integral or functional methods rather than
operator methods (e.g., relational Dirac observables quantization or relational
Schrodinger picture in the Page-Wootters formalism). Fourth, there is a fun-
damentally non-unitary relation between two spacetime reference frames under
a coordinate transformation due to an irreversible Ricci flow of the spacetime
reference frame, unlike most approaches in which the coordinate transformation
between different reference frames is assumed unitary. This is considered a key
ingredient of quantum spacetime reference frames that is intrinsically ensemble
statistical and thermal.

Generally speaking, our approach follows the general philosophy of quantum
reference frames but is considered independent of the details of past literature.
The framework associates with several elegant physical and mathematical struc-
tures not discussed in previous literature, such as the non-linear sigma model,
Shannon entropy, the Ricci flow, and density Riemannian geometry, etc. Our
previous works [1, 2, 11-16] have revealed very rich consequences of the frame-
work (e.g., the accelerated expansion of the late universe, the cosmological con-
stant, diffeomorphism anomaly, the inflationary early universe, local conformal
stability and non-collapsibility, modified gravity, etc.), but frankly speaking,
the possible consequences of the quantum reference frame are still far from fully
discovered. The main motivation for a quantum treatment of a reference frame
system is that it might form a foundation for constructing a theory of quantum
spacetime and quantum gravity analogous to the way it is used to construct
classical general relativity, and it is crucial for understanding the microscopic
origin of spacetime thermodynamics.
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A. Definition

In this section, we propose a quantum field theory of reference frames as a start-
ing point for studying a quantum theory of spacetime and quantum gravity,
based on an Equivalence Principle extended to reference frames described by
quantum states (discussed through a paradox in Section V-B and in the con-
clusion of the paper). The generalization of the Equivalence Principle to the
quantum level might form another foundation for quantum reference frames
and quantum gravity. How the Equivalence Principle behaves at the quantum
level has been discussed extensively in the literature (e.g., [26-30] and refer-
ences therein, and [31, 32] for an extended thermal version). The Equivalence
Principle is the physical foundation for measuring spacetime using physical ma-
terial reference frames even at the quantum level, and it is the bridge between
geometric curved spacetime and gravity; hence gravity is simply a relational
phenomenon where the motion of a test particle in gravity manifests as rela-
tive motion with respect to the (quantum) material reference frame. Without
the Equivalence Principle, we would lose the physical foundation of all these
concepts. Therefore, the basic argument of the paper is that several pieces of
evidence (e.g., the uniform quantum origin of the accelerating expansion of the
universe proposed by the author in previous works [1, 2, 13], and a consistent
incorporation of spacetime thermodynamics shown in this work) and the self-
consistency of the framework all provide possible support for its validity for the
quantum reference frame.

In this framework, a to-be-studied quantum system described by a state [))
and the spacetime reference system by | X) are both quantum. The states of the
whole system are given by an entangled state

WIX]) =D 14); ® X),

aij

in their direct product Hilbert space #;, ® H y. The state (1) of the to-be-
studied system and the reference frame system is an entangled state rather than
a trivial direct product state for the purpose of calibration between them. Usu-
ally, a quantum measurement is performed as follows. In the preparation step
of a quantum measurement, a one-to-one correlation between a quantum system
|¥); and a reference system |X),; (a quantum instrument or ruler) is prepared,
called calibration. This step in the usual sense is a comparison and adjustment
of the measuring instrument |X); by a calibration standard [¢s;anqara); Which
is physically similar to the to-be-studied system |¢);, = |¥yandara)i- A well-
calibrated entangled state Eij @[ Vstandara); ® |X) ; can be used to measure the
to-be-studied system |¢)); with reference to the quantum instrument |X);. In
essence, the measurement indirectly performs a comparison between |¢), and
the fiducial state |tgndara)i- Lhus the entangled state |[X]) is a superposition
of all possible one-to-one correlations. According to the standard Copenhagen
interpretation of a quantum state, the to-be-studied quantum system collapses
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into a state [i); together with the collapsing of the quantum reference system
into the corresponding |X),;, happening with joint probability |e;|?, meaning
that when the state of the quantum instrument is read out as being in state |X),
then in this sense the to-be-studied system is inferred to be the corresponding
|1);. A simple and practical example is the Stern-Gerlach experiment (see [1]).
The entangled state generalizes the textbook quantum description of the state
|t(2)) with respect to an idealized parameter x of a classical reference system
free from quantum fluctuations (in quantum mechanics x is Newtonian time, in
quantum field theory x* are Minkowskian spacetime coordinates).

The entangled state |)[X]) is inseparable, so the state can only be interpreted
in a relational manner, i.e., the entangled state describes the “relation” between
|t)) and |X), but not each absolute state. The individual state |¢)) has phys-
ical meaning only when referenced to |X) entangled with it. When quantum
mechanics is reformulated on the new foundation of the relational quantum
state (the entangled state) describing the “relation” between the state of the
under-studied quantum system and the state of the quantum reference system,
a gravitational theory is automatically contained in the quantum framework
without extra assumptions.

Since the state of reference | X) is also subject to quantum fluctuations, mathe-
matically speaking, the state |[¢)[X]) can be seen as the state |i)(x)) with smeared
spacetime coordinates, instead of the textbook state |¢(z)) with definite and
classical spacetime coordinates. The state |)[X]) could recover the textbook
state |1(z)) only when the quantum fluctuations of the reference system are
small enough to be ignored. More precisely, the second-order central moment
(and even higher-order central moments) fluctuations of the spacetime coordi-
nate (0X?) (the variance) can be ignored compared with its first-order moment
of quadratic distance (A X)? (squared mean), where (... ) represents the quantum
expectation value by the state of the reference system |X). In this first-order
approximation, this quantum framework recovers standard textbook quantum
mechanics without gravity. When the quantum fluctuation (§X?) as the second-
order correction of the reference frame system is important and taken into ac-
count, gravity as a next-order effect emerges in the quantum framework, as
if one introduces gravitation into standard textbook quantum mechanics, with
details shown below and in previous works.

To find the state | X) € H y of the quantum reference system, a quantum theory
of the reference frame must be introduced. If the quantum spacetime reference
frame | X*) (u=0,1,2,..., D —1) itself is considered as the to-be-studied quan-
tum system, with respect to the fiducial lab spacetime |z%) as the reference
system (a = 0,1,2,...,d — 1), the entangled state |X(z)) = Zij ;1 X); ® |z)
can be constructed by a mapping between the two states, i.e., |x) — |X). From
a mathematical viewpoint, to define a D-dimensional manifold we need to con-
struct a non-linear differentiable mapping X (z) from a local coordinate patch
z € R? to a D-manifold X € MP. This mapping in physics is usually realized
by a field theory for X(z), the non-linear sigma model (NLSM) [33-40]
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where ) is a constant with dimension of energy density [L~¢] taking the value
of the critical density (68) of the universe.

In the action, z* (a = 0,1,2,...,d — 1), with dimension of length [L], is called
the base space in NLSM terminology, representing the coordinates of the local
patch. They will be interpreted as the lab wall and clock frame as the starting
reference, which is considered fiducial and classical with infinite precision. Since
a quantum field theory must be formulated in a classical inertial frame, i.e., flat
Minkowskian or Euclidean spacetime, the base space is considered flat. Without
loss of generality, we consider the base space as Euclidean, i.e., z € R?, which
is better defined when one attempts to quantize the theory.

The differential mapping X*(z) (u =0,1,2,..., D—1), with dimension of length
[L], gives the coordinates of a general Riemannian or Lorentzian manifold M
(depending on the boundary condition) with curved metric g,,,,, called the target
space in NLSM terminology. We will work with real-valued coordinates for
the target spacetime, and the Wick-rotated version is included in the general
coordinate transformation of the time component. In the language of quantum

field theory, X*(z) or X, () = 0!

o 9 X" () are the real scalar frame fields.

Here, unless specifically mentioned, we will use the Einstein summation conven-
tion to sum over index variables appearing twice (Latin indices for the lab frame
from 0 to d — 1 and Greek indices for the spacetime from 0 to D — 1) and drop
the summation notation X.

From a physical point of view, the reference frame fields can be interpreted as
a physical coordinate system using particle/field signals, for instance, a multi-
wire proportional chamber that measures coordinates of an event in a lab. To
build a coordinate system, first we need to orient, align, and order the array of
multi-wires with reference to the lab wall z* (a = 1,2,3). The electron fields
(ignoring spin) in these arrays of multi-wires are considered as the scalar frame
fields. With reference to the lab wall, to locate the position of an event, at least
three electron signals X', X2, X must be received and read in three orthogonal
directions. The location information can be measured from the wave function
of the electron fields, e.g., from phase counting or particle number counting.
Usually we could consider the electrons in the wires to be free, and the field
intensity is not very large, so the intensity can be seen as a linear function of

the coordinates of the lab’ s wall, X*(z) = 22:1 Lx® (n=1,2,3), where el is
the intensity of the signals in each orthogonal direction. This means that when
the direction p is the lab’ s wall direction a, the intensity of the electron beam

is 1; otherwise the intensity is 0.

Similarly, one needs to read an extra electron signal X° to know when the event
happens, with reference to the lab’ s clock z°. Thus, the fields of these 3 + 1
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electron signals can be given by

3
Xt(z) =Y eldha® (n=0,1,2,3).
a=0

The intensity of the fields e is in fact the vierbein, describing a mapping from
the lab coordinate z® to the frame fields X*. When the event happens at a long
distance beyond the lab’ s scale, for instance, at the scale of Earth or the solar
system, we could imagine that extrapolating the multi-wire chamber to such
long distance scales still seems acceptable, only replacing the electron beam in
the wire with a light beam. However, if the scale is much larger than the solar
system, for instance, reaching galactic or cosmic scales, when the signal travels
along such long distances and is read by an observer, we could imagine that the
broadening of the light beam fields or other particle fields gradually becomes
non-negligible. More precisely, the second (or higher) order central moment
fluctuations of the frame fields signals cannot be neglected; the distance of
Riemannian/Lorentzian spacetime as a quadratic form must be modified by the
second moment fluctuation or variance (§X?2) of the coordinates:

(AX)?) = (AX)? + (6X3).
A local distance element in spacetime is given by a local metric tensor at the
point, so it is convenient to think of the location point X being fixed and
interpret the variance of the coordinate as affecting only the metric tensor g,,,

at the location point. As a consequence, the expectation value of a metric tensor
9, 1s corrected by the second central moment quantum fluctuation of the frame

fields:
0X, X 0X,\ /90X 0%\ 5 (0X
— [kl 20 G L v E -
<gul/>_<axa 6:L-a>_<a$a><8.’L‘a>+<5<axa>5<axa>>

where (§XH5XV) = ngu)(X) — 5g£ﬁ) (X),

o0 = () () = e

is the first-order moment (mean value) contribution to the classical spacetime.

For the contribution of the second-order central moment 69,@ (variance), the
expectation value of the metric generally tends to be curved and deformed; the
longer the distance scale, the more important the broadening of the frame fields,
making the spacetime geometry gradually deform and flow at long distance
scales.
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Since the classical solution of the frame fields (3) given by the vierbein satisfies
the classical equation of motion of the NLSM, it provides a frame field interpre-
tation of the NLSM in a lab: the base space of the NLSM is interpreted as a
starting reference provided by the lab’ s wall and clock, the frame fields X (x)
in the lab are the physical instruments measuring the spacetime coordinates. In
this interpretation we consider d =4 —¢€ (0 < € < 1) in (2) and D = 4 as the
minimal number of frame fields.

There are several reasons why d is not precisely but very close to 4 in the
quantum frame fields interpretation of the NLSM. First, certainly at the scale
of a lab it is our common sense; second, if we consider the entangled system
H ., ® H x between the to-be-studied physical system and the reference frame
fields system, without loss of generality we could take a scalar field v as the
to-be-studied (matter) system, which shares the common base space with the
frame fields. The total action of the two entangled systems is a direct sum of
each system:

St.X) = [ @ [J0,0070 = V() + 59,0, 500"

where V(¢) is some potential of the 1 fields. It can be interpreted as an action
of a quantum field i on general spacetime coordinates X. Since both the 1) field
and the frame fields X share the same base space z, here they are described
with respect to the lab spacetime x as in textbook quantum field theory defined
on an inertial frame x. If we interpret the frame fields as the physical general
spacetime coordinates, the coordinates of the 1 field must be transformed from
the inertial frame x to general coordinates X. At the semi-classical level, or first
moment approximation when the fluctuation of X can be ignored, it is simply
a classical coordinate transformation:

oY o
(6. X] % S[0] = [ % fldetgth) [;gﬁzwf(vf ~V(®)
w v

where /| det g()| is the Jacobian determinant of the coordinate transformation.
Note that the determinant requires the coordinate transformation matrix to be
square, so at the semi-classical level d must be very close to D = 4, which is
not necessarily true beyond the semi-classical level when second-order moment
quantum fluctuations are important.

For instance, since d is a parameter but an observable in the theory, it could
even be non-integer but effectively fractal at the quantum level. That d is not
precisely 4 is for quantum and topological reasons. To investigate this, we note
that quantization depends on the homotopy group m;(MP) of the mapping
X(z) : R — MP. If we consider the (Wick-rotated) spacetime MP to be
topologically S for simplicity, the homotopy group is trivial for all d < D = 4;
in other words, when d < 4 the mapping X (z) will be free from any unphysical
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singularities for topological reasons, and in this situation the target spacetime
is always mathematically well-defined. However, the situation d = 4 is a little
subtle, since m,(S*) = Z is non-trivial, the mapping might encounter intrinsic
topological obstacles and become singular, i.e., a singular spacetime configura-
tion. When the quantum principle is taken into account, this situation cannot
be avoided, and through its RG flow the spacetime is possibly deformed into
intrinsic singularities making the theory ill-defined at the quantum level and
non-renormalizable (RG flow does not converge). So at the quantum level,
d = 4 should not be precise; we must assume d = 4 — ¢ when the quantum
principle applies, while at the classical or semi-classical level, considering d = 4
presents no serious problem. The above argument differs from the conventional
simple power-counting argument, which claims the NLSM is perturbatively non-
renormalizable when d > 2, but this is not necessarily the case. It is known
that numerical calculations also support that d = 3 and d = 4 — € are non-
perturbatively renormalizable and well-defined at the quantum level.

B. Beyond the Semi-Classical Level: Gaussian Approximation

Going beyond the semi-classical or first-order moment approximation, we need
to quantize the theory at least at the next leading order. If we consider the
second-order central moment quantum fluctuations as the most important next-
to-leading order contribution (compared with higher-order moments), we call
it the Gaussian approximation or second-order central moment approximation,
while higher-order moments are all called non-Gaussian fluctuations which might
be important near local singularities of the spacetime when local phase transi-
tions occur, although the intrinsic global singularity can be avoided by ensuring
the global homotopy group is trivial.

At the Gaussian approximation, 6g£21,) when it is relatively small compared with

ng3 can be given by a perturbative one-loop calculation [37, 38] of the NLSM:

Ry
0910 (X) = San2n N

where R,(}l} is the Ricci curvature given by the first-order metric g,(}l}7 and k2 is
the cutoff energy scale of the Fourier component of the frame fields. The validity
condition for the perturbative calculation RV §k? « X is the validity condition
for the Gaussian approximation, which can be seen as follows. It will be shown
in a later section that A is nothing but the critical density p,. of the universe,
A ~ O(HZ/G), where H,, is Hubble s constant and G is Newton’ s constant.
Thus for our concern of pure gravity in which matter is ignored, the condition
RWGE? « ) is equivalent to 6k% <« 1/G, which is reliable except when some
local singularities develop where the Gaussian approximation fails.

Equation (9) is nothing but an RG equation, known as the Ricci flow equation
(see reviews in, e.g., [41-43]):
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99,

a’; =—2R,,
with flow parameter 0t = — 5155 6k? having dimension of length squared [L?],
which continuously deforms the spacetime metric driven by its Ricci curvature.
Since the Ricci curvature is non-linear in the metric, the Ricci flow equation is a
non-linear version of a heat equation for the metric, and flow along ¢ introduces
an averaging or coarse-graining process to the intrinsic non-linear gravitational
system which is highly non-trivial [44-48]. In general, if the flow is free from local
singularities there exists a long flow-time solution in t € (—o0,0), often called
an ancient solution in mathematical literature. This range of the t-parameter
corresponds to k € (0,00), that is from ¢t = —oo0, i.e., the short-distance (high-
energy) UV scale k = oo, forward to t = 0, i.e., the long-distance (low-energy)
IR scale k = 0. The metric at a certain scale t is given by averaging out the
shorter-distance details, which produces an effective correction to the metric at
that scale.

Thus along ¢, the manifold loses information at shorter distances, making the
flow irreversible, i.e., generally having no backward solution, which is the un-
derlying reason for the non-unitarity and existence of entropy of a spacetime.

As shown in (4) and (5), the second-order moment fluctuation modifies the
local (quadratic) distance of the spacetime, so the flow is non-isometric. This
is an important feature worth stressing, which is the underlying reason for the
anomaly. The non-isometry is not important for topology, so along ¢, the flow
preserves the topology of the spacetime but changes its local metric, shape, and
size (volume). There also exists a very special solution of the Ricci flow called a
Ricci soliton, which only changes the local volume while keeping its local shape
unchanged. The Ricci soliton, and its generalized version, the Gradient Ricci
Soliton, as flow limits, are generalizations of the notion of a fixed point in the
sense of RG flow. The Ricci soliton is an important concept for understanding
gravity at cosmic scale and studying the thermodynamics of the Ricci flow at
equilibrium.

The Ricci flow was initially introduced in the 1980s by Friedan [34, 35] in d =
2 + ¢ NLSM and independently by Hamilton in mathematics [49, 50]. The
main motivation for introducing it from the mathematical point of view is to
classify manifolds; a specific goal is to prove the Poincaré conjecture. Hamilton
used it as a useful tool to gradually deform manifolds into “simpler and better”
manifolds whose topology can be readily recognized in simple cases. A general
realization of this program was achieved by Perelman around 2003 [3, 51, 52],
who introduced several monotonic functionals to successfully deal with local
singularities that might develop in more general cases. The Ricci flow approach
is powerful not only for compact geometry (as Hamilton’ s and Perelman’ s
seminal works have shown) but also for non-compact [53-55] and Lorentzian
geometry [15, 56-62].
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C. The Wavefunction and Density Matrix at the Gaussian Approxi-
mation

So far we have not explicitly defined the quantum state of the reference frame
|X) in (1). In fact, the previous second-order results, e.g., (5), (9), and hence
the Ricci flow (10), can also equivalently be given by the expectation value
(0) = (X]0|X) via explicitly writing down the wavefunction ¥(X) of the frame
fields at the Gaussian approximation.

Note that at the semi-classical level, the frame fields X are delta-distributed
and peak at their mean value, and furthermore, the action of the NLSM resem-
bles a collection of harmonic oscillators. Thus at the Gaussian approximation
level, finite Gaussian width/second moment fluctuation of X must be introduced.
When one performs canonical quantization of the NLSM at the Gaussian approx-
imation level, the fundamental solution of the wave functional (as a functional
of the frame fields X*) of the NLSM takes the Gaussian form, i.e., a coherent
state:

/\1/2
ex
(2m)P/4| det o, |/4] det g, [1/4

WX ()] = [ 51X (@0, (2)X" @)

where the covariance matrix o, (z), playing the role of the Gaussian width, is
the inverse of the second-order central moment fluctuations of the frame fields
at point x:

1
(@) = (6XH(2)0X"(z))

which is also given by perturbative one-loop calculation up to a diffeomorphism
of X. The absolute value symbol |X*o,, X"| in the exponential is used to
guarantee that the quadratic form and hence the determinant of o, induced
from the Gaussian integral over X remain positive even in Lorentzian signature.

We can also define a dimensionless density matrix corresponding to the funda-
mental solution of the wavefunction:

A
(2m)P/2, [l det o, | /| det g, |

u[XH(2)] = (X)¥(X) = exp [—|X*(z)0,, X" ()]

%

A
(2m)P/2, [ldet o, ||/ det g, |

where is a normalization parameter, so that

/dDX T (X)T(X) = /\/dDX wX) =1,
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in which we often attribute the flow of the volume form dP% to the flow of the
metric g,, for the volume element dPX = dV,(X*) = /]g,|dX°d X dX2dX3.
Then the expectation values (O) can be understood as A [ dP* uO.

As the quantum frame fields X are g-numbers in the theory, precisely speak-
ing, the integral over them should, in principle, be a functional integral. Here
the formal c-number integral [ dP¥ ... is conventional in the Ricci flow litera-
ture, where X is a coarse-grained c-number coordinate of manifolds at scale ¢.
The exact functional integral of X is considered when calculating the partition
function and related anomalies of the theory in Section III.

Under a diffeomorphism of the metric, the transformation of u(X) is given by
a diffeomorphism of the covariance matrix (where h is some function):

Oy =0, =0,, +V,V,h
Thus there exists an arbitrariness in the density w(X) for different choices of
diffeomorphism/gauge.

According to the statistical interpretation of the wavefunction with the normal-
ization condition (14), u(X% X!, X2, X3) describes the probability density of
finding these frame particles in the volume dV,(X*). As the spacetime X flows
along t, the volume AV, over which the density is averaged also flows, so the
density at the corresponding scale is coarse-grained. If we consider the volume
of the lab, i.e., the base space, to be rigid and fixed by A [ d** = 1, noting (14),
we have

1
X+ — lim — Az,
u[X*(z),1] A Ay /Ath

We can see that the density (X, t) can be interpreted as a coarse-grained density
in the volume element AV, — 0 with respect to a fine-grained unit density in
the lab volume element d** at UV t — —oo0.

In this sense, the coarse-grained density u(X,t) is analogous to Boltzmann’ s
distribution function, so it should satisfy an analogous irreversible Boltzmann
equation, giving rise to an analogous Boltzmann monotonic H-functional. In
the following sections, we will deduce such an equation and the functional of
u(X,t). The coarse-grained density u(X,t) has profound physical and geometric
meaning; it also plays a central role in analyzing the statistical physics of the
frame fields and generalizes manifolds to density manifolds.

D. Ricci-DeTurck Flow

In the previous subsection, from the viewpoint of frame field particles, u(X*,t)
has a coarse-grained particle density interpretation. Equation (16) can also be
interpreted as a manifold density [63] from the geometric point of view. For
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instance, u(X,t) associates a manifold density or density bundle to each point
X of a manifold, measuring the “fuzziness” of the “point” . It is worth stressing
that the manifold density u(X,t) is not simply a conformal scaling of a metric
by a factor, since if that were the case, the integral measure of D = 4-volume or
3-volume in the expectation (O) = X [ dP* uO would scale by different powers.

There are various useful generalizations of the Ricci curvature to density mani-
folds; a widely accepted version is the Bakry-Emery generalization [64], which is
also used in Perelman’ s seminal paper. The density-normalized Ricci curvature
is bounded from below:

R, — R, —V,V, logu, R, -V, logu=>o0,,

if the density manifolds have finite volume.

As a consequence, replacing the Ricci curvature by the density-normalized one,
we obtain the Ricci-DeTurck flow [65]:

09,
ot

=-2 (R/w -V,V,log u),

which is equivalent to the standard Ricci flow equation (10) up to a diffeomor-
phism. Mathematically, the Ricci-DeTurck flow has the advantage that it turns
out to be a gradient flow of some monotonic functionals introduced by Perelman,
which have profound physical meanings as shown later.

Equations (14) and (16) also give a volume constraint to the fiducial spacetime
(the lab): the coarse-grained density w(X,t) cancels the flow of the volume

element /| detg,, |, so

)\/d4”“':/dPXu(XJ):/dDX./\deth u(X,t) =1.

Together with the Ricci-DeTurck flow equation (19), we have the flow equation
of the density:

ou

which is analogous to the irreversible Boltzmann equation for his distribution
function. Ay is the Laplacian operator in terms of the manifold coordinates
X. Note the minus sign in front of the Laplacian; it is a backwards heat-like
equation. Naively speaking, the solution of the backwards heat flow will not
exist. However, we could also note that if one lets the Ricci flow reach a certain

IR scale t,, and at ¢, one might then choose an appropriate u(t,) = u, arbitrarily
(up to a diffeomorphism gauge) and flow it backwards in 7 = t, — ¢ to obtain a
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solution u(7) of the backwards equation. Now since the flow is considered free
from global singularities due to the triviality of the homotopy group, we could
simply choose t, = 0, so we define

1
642\

k* € (0, 00).

T=—1t=

In this case, the density satisfies the heat-like equation

0
o = (Ax — Ru,
or
which does admit a solution along 7, often called the conjugate heat equation

in mathematical literature.

Thus far, (23) together with (19) transforms the mathematical problem of the
Ricci flow of a Riemannian/Lorentzian manifold into a coupled system:

99,
8; =2 (RW -V,V, log u) ,
ou
aor =(Ay — R)u

with dt = —d7, and the manifold (M, g) is generalized to a density manifold
(MP | g,u) [63, 66, 67] with the constraint (14).

III. The Anomaly and Its Implications

At the semi-classical approximation, as seen in eq. (8), when the quantum fluc-
tuations of the frame fields or spacetime coordinates are ignored, the general
coordinate transformation is just a classical coordinate transformation. We will
show that when quantum fluctuations are taken into account in the general
coordinate transformation beyond the semi-classical approximation, quantum
anomalies emerge. As seen in the previous section, the quantum fluctuation
and hence the coarse-graining process of the Ricci flow does not preserve the
quadratic distance of a geometry, see (4) and (5). The non-isometry of the quan-
tum fluctuation induces a breakdown of diffeomorphism or general coordinate
transformation at the quantum level, namely the diffeomorphism anomaly.

In this section, we derive the diffeomorphism anomaly of the theory, show its
relation to the Shannon entropy whose monotonicity gives an analogous H-
theorem for the frame fields system and the Ricci flow. Furthermore, as the
quantum frame fields theory describes a quantum spacetime, together with the
generalized quantum Equivalence Principle, the anomaly-induced effective ac-
tion in terms of the Shannon entropy can also be interpreted as a gravity theory,
which at low-energy expansion is a scale-dependent Einstein-Hilbert action plus
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a cosmological constant. This part has some overlap with previous work [2];
for the self-containedness of the paper, we hope this section provides general
background and lays the foundation for the subsequent thermodynamic and
statistical interpretation of the theory.

A. Diffeomorphism at the Quantum Level

First we consider the functional quantization of the pure frame fields without
explicitly incorporating matter sources. The partition function is

Z(MP) = / [DX] exp(—S[X]) = / [DX]exp (—g / 4 gwaaxuaaxv>

where MP is the target spacetime, and the base space can be either Euclidean
or Minkowskian. Since considering the action or the volume element d** =
d*® det e (det e is a Jacobian) does not pick up any imaginary i factor regardless
of whether the base space is Minkowskian or Euclidean (if one takes dz®) then
dete® — —jdet e(M)), without loss of generality we use the Euclidean base
spacetime in the following discussions, and remind that the result is the same
for Minkowskian.

Note that a general coordinate transformation X* — X# = %AZX” = eb XV

does not change the action S[X] = S[X], but the measure of the functional
integral changes:

DX =[] dXx#(z) =[] |dete(x)| [[dX () = ][] /I detg,.| ] dX*(x)

where /[ det g, | = |detes| is the Jacobian of the diffeomorphism. The Jaco-

bian is nothing but a local relative (covariant basis) volume element dV (X*)
with respect to the fiducial volume dV (X?). Note that the normalization con-
dition (14) also defines a fiducial volume element ud*® = udV (X*), so the
Jacobian is related to the frame fields density matrix:

L dV(XY)
ny — _ H_
u(XH) = 7dV(}Z’M) = |deteq| = y/|detg,,|.

Here the absolute value of the determinant is used because the density u and the
volume element are kept positive-definite even in Lorentzian signature. Other-
wise, for Lorentzian signature, one should introduce some extra imaginary factor
i into (30) to maintain condition (14). The density so defined following (14) is
an explicit generalization from the standard 3-space density to a 4-spacetime
version. It is the definition of the volume form and the manifold density that
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ensures the formalism of the framework is formally identical to Perelman’ s
standard form even in Lorentzian signature. The manifold density encodes the
most important information of a Riemannian or Lorentzian geometry, i.e., the
local volume comparison.

In this case, if we parameterize a dimensionless solution u of the conjugate heat
equation as

. A e

then the partition function Z(M?P) transforms to

Z(mP) = /[DX] exp(—S[X]) = /[DX]\ det e| exp(—S[X]) = exp ()\/dDXulogu> /[DX] exp(—S[X)).

Note that N(MP) in the exponential of the change of the partition function

Z(MP) = eAN(MD>Z(]V[D) is nothing but a pure real Shannon entropy in terms
of the density matrix u:

N(MP) = /dDXulogu.

The classical action S[X] is invariant under general coordinate transformation
or diffeomorphism, but the quantum partition function is no longer invariant
under general coordinate transformation or diffeomorphism, which is called dif-
feomorphism anomaly, meaning a breakdown of diffeomorphism at the quantum
level. The diffeomorphism anomaly is purely due to the quantum fluctuation
and Ricci flow of the frame fields which do not preserve the functional integral
measure and change the spacetime volume at the quantum level. The diffeo-
morphism anomaly has many profound consequences for the theory of quantum
reference frames, e.g., non-unitarity, the trace anomaly, the notion of entropy,
reversibility, and the cosmological constant.

The non-unitarity is indicated by the pure real anomaly term, which is also
induced by the non-isometry or volume change, and consequently the non-
invariance of the measure of the functional integral during the Ricci flow. Be-
cause of the real-valued volume form (29) for both Euclidean and Lorentzian sig-
natures, the pure real contribution of the anomaly and hence the non-unitarity
are valid not only for spacetime with Euclidean but also for Lorentzian signa-
ture; it is a rather general consequence of the Ricci flow of spacetime. Essen-
tially speaking, the reason for the non-unitarity is that we have enlarged the
Hilbert space of the reference frame from a rigid classical frame to a fluctuating
quantum frame. The non-unitarity implies the breakdown of the fundamental
Schrédinger equation, which is only valid on classical time of an inertial frame,
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the solution of which lies in #,,. A fundamental equation playing the role of
the Schrodinger equation, which can arbitrarily choose any (quantum) physical
system as time or reference frame, must be replaced by a Wheeler-DeWitt-like
equation in some sense [11], the solution of which lies instead in 7, ® # . In
this fundamental equation, the quantum fluctuation of physical time and frame,
more generally a general physical coordinate system, must break unitarity. We
know that in quantum field theory on curved spacetime or accelerating frames,
the vacuum states of quantum fields in diffeomorphism-equivalent coordinate
systems are unitarily inequivalent. The Unruh effect is a well-known example:
accelerating observers in the vacuum will measure a thermal bath of particles.
The Unruh effect shows how a general coordinate transformation (e.g., from an
inertial to an accelerating frame) leads to the non-unitary anomaly (particle
creation and hence particle number non-conservation), and how the anomaly re-
lates to a thermodynamic system (thermal bath). In fact, like the Unruh effect,
the Hawking effect [68] and all non-unitary particle creation effects in curved
spacetime or accelerating frames are related to the anomaly in a general covari-
ant or gravitational system. All these imply that the diffeomorphism anomaly
will have a deep thermodynamic interpretation, which is the central issue of this
paper.

Without loss of generality, if we simply consider the under-transformed coordi-
nates X* identifying with the coordinates of the fiducial lab x® which can be
treated as classical parameter coordinates, in this situation the classical action
of the NLSM is just a topological invariant, i.e., half the dimension of the target
spacetime:

)\ x v )\ x v —2D x
eXp(_SC]) = exp <_§ /d4‘L guuaawuaaf]} ) = exp <_§ /d4 gl“/g” ) =e 2Dfd4 .
Thus the total partition function of the frame fields takes a simple form:
Z(MD) = AN [t

B. The Trace Anomaly

The partition function is now non-invariant (32) under diffeomorphism at the

quantum level, so if one deduces the stress tensor by (T,,) = —%561;’5? , its

trace (g")(T,,) = 0 differs from (¢*T,,) = (T)\), giving the trace anomaly:

(ATH) = (9" N(T}) — (9" T,) = AN (MP)
known as the trace anomaly. Cardy conjectured [69] that in a d = 4 theory,
quantities like (7)) could be a higher-dimensional generalization of the mono-
tonic Zamolodchikov’ s c-function in d = 2 conformal theories, leading to a
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suggestion of the a-theorem [70] in d = 4 and other suggestions (e.g., [71, 72]).
In the followNing subsections, we will show that the Shannon entropy N and
generalized N are indeed monotonic, which might have more advantages, e.g.,
being suitable for Lorentzian target spacetime and for general D.

Note that the Shannon entropy N(M?P) can be expanded at small 7:
AN(WMP) = A" B,7" = A(By + Byr + Byr® +...) (1= 0).

For D = 4 the first few coefficients are:

[ A
. 14X/

B - hL%/d‘*X\/@(R+ V%),
) 1
B, =ty [ VI (gl + V5P,

where B, can be renormalized away, and a renormalized B; will contribute to
the effective Einstein-Hilbert action of gravity, see the following subsection D.
And B,, as a portion of the full anomaly, plays the role of the conformal/Weyl
anomaly up to some total divergence terms, for instance, AR terms and the
Gauss-Bonnet invariant. That is, a non-vanishing B, term measures the break-
down of conformal invariance of MP=%; otherwise, a vanishing B, means that
the manifold is a gradient steady Ricci soliton as the fixed point of the Ricci-
DeTurck flow, which preserves its shape (conformal invariant) during the flows.

We note that B, as the only dimensionless coefficient measures the anoma-
lous conformal modes; in this sense, N(MP) indeed relates to certain entropy.
However, since the conformal transformation is just a special coordinate trans-
formation, it is clear that the single B, coefficient does not measure the total
(general coordinate transformation) anomalous modes. Obviously this theory at
2 < d =4 — € is not conformally invariant, thus as the theory flows along ¢, the
degrees of freedom are gradually coarse-grained and hence the mode-counting
should also change with the flow and the scale. Consequently, all coefficients
B,, in the series and hence the total partition function e*V ") should measure
the total anomalous modes at a certain scale 7, leading to the full entropy and
anomaly.

Different from some classically conformally invariant theories, e.g., string theory,
in which we only need to cancel a single scale-independent B, coeflicient to avoid
conformal anomaly, as the theory in higher than 2 dimensions is not conformally
invariant, the full scale-dependent anomaly N(MP) is required to be canceled
at a certain scale. Fortunately, it will be shown in a later subsection that a
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normalized full anomaly AN (MP) can converge at UV due to its monotonicity,
thus giving rise to a finite counterterm of order O(\) playing the role of a correct
cosmological constant. The idea that the trace anomaly might have a relation
to the cosmological constant is a recurring subject in the literature [73-77]; in
this framework, the cosmological constant naturally emerges in this way as the
counterterm of the trace anomaly (see subsection D or [2]).

C. Relative Shannon Entropy and an H-Theorem for Non-Equilibrium
Frame Fields

In the Ricci flow limit, i.e., the Gradient Shrinking Ricci Soliton (GSRS) con-
figuration, the Shannon entropy N takes its maximum value N,, similar to a
thermodynamic system being in a thermal equilibrium state where its entropy is
also maximal. In mathematical literature on Ricci flow, it is common to define
a series of relative quantities with respect to the extreme values taken by the
flow limit GSRS or analogous thermal equilibrium state, denoted by a subscript
*.

In GSRS, the covariance matrix o, as the second central moment of the frame

fields with an IR cutoff k is simply proportional to the metric:

v 1
(0X#3X") =/ oi 9" = 719",
=k

(2m)* p?
and then
* — 1 7
O'i“’ = (UI“/) 1= ;g/ v,

which means a uniform Gaussian broadening is achieved. In this gauge, only
the longitudinal part of the fluctuation exists.

When the density-normalized Ricci curvature is completely given by the lon-
gitudinal fluctuation o, i.e., inequality (18) saturates, we obtain a Gradient
Shrinking Ricci Soliton (GSRS) equation:

Ry + V900 = 5=
This means that, on the one hand, for a general f(X) = %‘U#VX“XVL R,
seems to vanish, so the standard Ricci flow equation (10) terminates; and on
the other hand, the Ricci-DeTurck flow (19) only changes the longitudinal size or
volume of the manifolds while keeping its shape unchanged, thus the GSRS can
also be seen as stopping changing, up to a size or volume rescaling. Therefore,
the GSRS is a flow limit and can be viewed as a generalized RG fixed point.
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In the following, we consider relative quantities with respect to the GSRS con-
figuration. Considering a general Gaussian density matrix, in the GSRS limit
it becomes

A 1
u(X) = exp (5 /X", %)

(2m)P/2, /| det o, | /| det g, |

0= o (T,

Therefore, in GSRS, a relative density can be defined by the general Gaussian
density u(X) relative to the density v, (X) in GSRS:

Using the relative density, a relative Shannon entropy N can be defined by

N(MD) = —/dDXﬂlogﬂ = —/dDXulogu—&—/dDXu*logu* =N-N,=—-logZp <0,
where Zp is nothing but Perelman’ s partition function:

D A
log Zp = /dDXu* (5 Jrloggm),

and N, is the maximum Shannon entropy:

N, = —/dDXu*logu* = /dDXu,k [1+log (Lﬂ .
AT

Since the relative Shannon entropy and the anomaly term are purely real, the
change of the partition function under diffeomorphism is non-unitary. For the
coarse-graining nature of the density u, it is proved that the relative Shannon
entropy is monotonic non-decreasing along the Ricci flow (along t):

=—F>0,
where F' = F — F, <0 is the GSRS-normalized F-functional of Perelman:

Flu) = / dPX u (R +|V1P2)
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with the maximum value (at GSRS limit) F, = F(u,) = £.

Inequality (50) gives an analogous H-theorem for the non-equilibrium frame
fields and the irreversible Ricci flow. The entropy is non-decreasing along the
Ricci flow, making the flow irreversible in many aspects similar to processes
of irreversible thermodynamics, meaning that as the observation scale of the
spacetime flows from short to long distance scales, the process loses information
and the Shannon entropy increases. The equality in (50) is achieved when the
spacetime configuration has flowed to a limit known as a Gradient Shrinking
Ricci Soliton (GSRS), when the Shannon entropy takes its maximum value.
Similarly, at the flow limit the density matrix u, (eq. 45) takes the analogous
standard Maxwell-Boltzmann distribution.

D. Effective Gravity at Cosmic Scale and the Cosmological Constant

In terms of the relative Shannon entropy, the total partition function (35) of
the frame fields is normalized by the GSRS extreme value:

Z(MD) — e/\N—%TDfd‘lw _ eAIV—ATD fdie _ Z;Ae_A‘TDfdM — exp (/dDX u(f— D)) ]

The relative Shannon entropy N as the anomaly vanishes at GSRS or IR scale,
but it is non-zero at ordinary lab scale up to UV where the fiducial volume
of the lab is considered fixed A [ d** = 1. The cancellation of the anomaly at
the lab scale up to UV is physically required, which leads to the counterterm

v(MP__ ) or cosmological constant. The monotonicity of N (eq. 50) and the

W-functional implies [3, 78]:

v(MP ) = lim AN(MP u,7) = lim AW(MP u,7) = inf AW (MP,u, 1) <0,

T—00 T—00

where W, Perelman’ s W-functional, is the Legendre transformation of N with
respect to L

21

d
W=r

+N=rF+N= /dDX [T(R+|Vf]?)+ f—D].

&

T

In other words, the difference between the effective actions (relative Shannon
entropies) at UV and IR is finite:

Perelman used his analogies: temperature T ~ 7, (relative) internal energy
U ~ —T2F thermodynamic entropy S ~ —W, and free energy F ~ TN up
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to proportional factors balancing dimensions on both sides of ~. Equation (55)
is analogous to the thermodynamic equation U — T'S = F. So in this sense
the W-functional is also called the W-entropy. Whether the thermodynamic
analogies are real and physical, or just pure coincidences, is an important issue
discussed in the next sections.

In fact, e¥ < 1 (usually called the Gaussian density [79, 80]) is a relative volume
or the reduced volume V(M D ) of the backwards limit manifolds introduced
by Perelman, or the inverse of the initial condition of the manifold density at
7 = 0. A finite value of it makes an initial spacetime with unit volume flow from
UV and converge to a finite u _,, and hence the manifold finally converges to
a finite relative volume/reduced volume instead of shrinking to a singular point

at 7=0.

As an example, for a homogeneous and isotropic universe for which the sizes
of space and time (with a “ball” radius a(7)) are on an equal footing, i.e., a
late-epoch FRW-like metric ds* = a?(7)(—dz? + dz? + dzi + dz?), which is
a Lorentzian shrinking soliton configuration. Note that the shrinking soliton
equation R, = %gw (29) is independent of the signature, so it can be approx-
imately given by a 4-ball value v(B%) ~ —0.8 [1, 2].

Thus the partition function, which is anomaly-canceled at UV and has a fixed-

volume fiducial lab, is

Z(MP) = AN=2P [dtr _ v

Since lim._,, N(MP) =0, at small 7, N(MP) can be expanded in powers of 7

~ D ~
N(MD) = /dDX Ur—0 I:f‘r~>0 - §:| = TF+0(7—2> = 7—/dDX Ur 0 (RT*?O + |vf‘r~>0|2)+0(7—2>7

in which A [ dPXu,_o7|Vf,_ o> = (at GSRS) has been used.
For D = 4 and small 7, the effective action of Z(M*?) can be given by

—log Z(M*) = S ~ /d4X g (22 — ARyT 4+ Av)  (small 7).

Considering uqd** = /|g,|dV = /|g,|dX°d X dX?d X? is the invariant volume
element, and using (22) to replace t or 7 by cutoff scale k, we have

2

Ser = /dV\/ |91c| (2/\ -

The effective action can be interpreted as a low-energy effective action of pure
gravity. As the cutoff scale k ranges from the lab scale to the solar system

4 2
6]: —|—)\V> (small k).
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scale (k > 0), the action must recover the well-tested Einstein-Hilbert (EH)
action. But at cosmic scale (kK — 0), we know that the EH action deviates from
observations and the cosmological constant becomes important. In this picture,
as k — 0, the action leaving 2\ + Av should play the role of the standard
EH action with a limiting constant background scalar curvature R, plus the
cosmological constant, so

20+ v = Ry — 2A.
While at £ — o0, AN — v, the action leaving only the fiducial Lagrangian

2\ = %)\ should be interpreted as a constant EH action without the cosmological
constant. Thus we have the cosmological term:

A=—\v(BL)~08p,,

where p, is the critical density. The action can be rewritten as an effective EH
action plus a cosmological term:

R
S = / AV /9] (167%16 - 2A) (small &),

where

1 _ 6472
167G, k2’

A=2\+ v,

which is nothing but the flow equation of the scalar curvature [43]:

dR, 1 1 D
% _ R, =~ + Ry
dk? 4dr G, or TooT + 2T o7

Since at cosmic scale k — 0, the effective scalar curvature is bounded by R,
which can be measured by Hubble’s constant H, at the cosmic scale, X is nothing
but the critical density of the 4-spacetime Universe:

Ry =D(D—1)H? = 12H2 = p,,

so the cosmological constant is always of order of the critical density with a
“dark energy” fraction 2, = —v &~ 0.8, which is close to the observational value.
Detailed discussions about the cosmological constant problem and observational
effects in cosmology, especially the modification of the distance-redshift relation
leading to the acceleration parameter g, ~ —0.68, can be found in [1, 2, 12, 13].
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If matter is incorporated into the gravity theory, consider the entangled sys-
tem in #, ® J y between the to-be-studied quantum system (matter) and the
quantum reference frame fields system (gravity). The 2\ term in eq. (8) is nor-
malized by the Ricci flow. Using eq. (60) and eq. (65), matter-coupled gravity
emerges from the Ricci flow:

1 oY o 6472
St X1 = [ avviml |59 s s — V(0 + 2= S

IV. Thermal Equilibrium State

A Gradient Shrinking Ricci Soliton (GSRS) configuration as a Ricci flow limit
extremizes the Shannon entropy N and the W-functional. Similarly, a thermal
equilibrium state also extremizes Boltzmann’ s H-functional and the thermody-
namic entropy. Thus the process of a generic Ricci flow evolving into a GSRS
limit is analogous to a non-equilibrium state evolving into a thermal equilibrium
state; they are not merely similar but even equivalent when the thermal system
is precisely the frame fields system. In this section, following the previous dis-
cussions on the non-equilibrium state of the frame fields in 4 dimensions, in
a proper choice of time, we will discuss the thermal equilibrium state of the
frame particle system as a GSRS configuration in lower 3 dimensions, in which
the temperature and several thermodynamic functions of the system can be ex-
plicitly calculated and the manifold density can be interpreted as the thermal
ensemble density of the frame fields particles, giving a statistical interpretation
to Perelman’ s thermodynamic analogies of the Ricci flow.

A. A Temporal Static Shrinking Ricci Soliton as a Thermal Equilib-
rium State

When the shrinking Ricci soliton M* is static in the temporal direction, i.e.,
being a product manifold M* = M3 x R with 6X/§X° = 0, where X° € R is the
physical time and X = (X!, X2, X?) € M3 is a 3-space gradient shrinking Ricci
soliton of lower dimension, we can prove here that the temporal static spatial
part M3 is in thermal equilibrium with the flow parameter 7 proportional to
its temperature, and the manifold density u of M3 can be interpreted as the
thermal equilibrium ensemble density.

According to Matsubara’ s formalism of thermal field theory, the thermal equi-
librium of the spatial frame fields can be defined by the periodicity X (z,0) =
X(z,B) in their Euclidean time of the lab (recall that we start from the Eu-
clidean base space for the frame fields theory), where 8 = 1/T is the inverse
temperature. Now the frame fields are a mapping R x S' — M3 x R. Then
in such a configuration, the 7 parameter of the 3-space shrinking soliton M3
becomes
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_/d3pdwn 1 _/ > 1
) et PreE T ) @t @)

where w,, = 27nT, and ) | | dw,, have been used. The calculation is a periodic-
Euclidean-time version of the general eq. (41). Since the density matrix eq. (45)
of the frame fields X* is Gaussian or a coherent state, in which the oscillators
are almost condensed in the central peak, thus wy = 0 dominates the Matsubara
sum:

_ L v 1T
TT T ] GrEp? T 120%a,

where the 3-space energy density is Ay = A/ f dx. Note that this differs from the
naive notion of “temporal static”at the classical level, which means (§ X /6 X°) =
0 with respect to the physical clock X° of the quantum reference frame. However,
the notion of “temporal static” is a little subtle at the quantum level. Because
there is no “absolute static” at the quantum or microscopic level, since at such
microscopic scales the modes are always in motion or vibrating with respect
to the infinitely precise lab time 2z, i.e., X (z)/02° # 0. Actually §X/9z°
is generally non-zero even though its oscillation degrees of freedom are almost
frozen (Matsubara frequency w,, is zero for the Gaussian wavefunction), while
the center of the Gaussian wave packet of X is in translational motion so p # 0,
so its expectation value is in general finite, for instance, (90X (z)/02°) ~ 3T < oo
claimed by the equipartition energy of the translational motion in 3-space.

In general, whether or not the modes of the spatial frame fields are temporal
static depends on the scale at which one evaluates the average of the physical
clock (X°). The notion of “thermal static”in the sense of statistical physics is ap-
proximate at a macroscopic scale rather than a microscopic scale, at which scale
the molecules are always in motion (as is the physical clock X°). The macro-
scopic scale of the thermal static system is at such a long physical time scale
§(X") > §2° that the averaged physical clock is almost frozen 9(X")/92° — 0
with respect to the infinitely precise lab time x°, so that the thermal static con-
dition (6X/6X°) = 0 can be achieved. More precisely, when we mention that
the 3-space is macroscopically “temporal static” , an IR cutoff, for example, H,,
as a macroscopic Hubble scale should be taken into account. The fluctuation
modes on the 3-space outside the Hubble scale 0 < |p| < H,, are frozen and tem-
poral static, while those modes |p| > H,, inside the Hubble horizon are dynamic.
So with this cutoff scale we have

9(X0)
0x0

— 0,

and
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(6X/5X) = (9 /02) - 920 /D(XO) ~o —> / g = Ly
127523 Jpi=n, 0

where the 3-space energy density is Ay = A/ [ dz®. Note that if we consider
the temporal integral is also cutoff at about a long physical time scale, e.g.,
the age of the universe O(1/H,), let the temporal direction be normalized as

2
f0127r /Ho dzH, = 1, then the condition [d**\ = 1 gives its 3-space version
[ d3* X5 = 1, which is the definition of A3 on the 3-space slice generalizing the
critical density A in a 4-spacetime covariant theory.

It is worth stressing that since the spatial slice depends on the definition of time,
the value of A5 is not universal (not necessarily equal to the above 1272\ in other
frames or cutoffs, unlike the universal 4-spacetime critical density A) but frame-
dependent. If a specific gauge of time or frame is chosen, A; could be considered
fixed and used as a proportionality factor to correlate the 7 parameter with the
temperature of the temporal static frame fields configuration in that specific
gauge of time. The 3-space energy density A5 is very useful when we consider
a temporal static GSRS spacetime or the corresponding thermal equilibrium
frame fields ensemble in later discussions.

In summary, an important observation is that when M3 is a shrinking Ricci
soliton in a temporal static product shrinking soliton M3 x R, the global T pa-
rameter of M3 can be interpreted as a thermal equilibrium temperature defined
by the Euclidean time periodicity of the frame fields, up to a proportionality
factor being a 3-space energy density A5 (satisfying eq. 74) balancing the di-
mensions between 7 and 7. Since temperature T is frame-dependent, so is the
proportionality factor A;. This observation gives us a reason why in Perelman’
s paper T could be analogous to temperature T'. The same results can also be
obtained if one uses the Lorentzian signature for the lab or base spacetime of
the frame fields theory (2). In this case the thermal equilibrium of the spatial
frame fields is instead subject to periodicity in the imaginary Minkowskian time
X(z,0) = X(x,i8), but even though the base spacetime is Wick-rotated, the
path integral does not pick up any imaginary ¢ factor in front of the action in (25)
as the starting point, so the main results of the discussions remain independent
of the signature of the base spacetime.

B. Thermodynamic Functions

For the thermodynamic interpretation of the quantum reference frame and grav-
ity theory, in this subsection we derive other thermodynamic functions of the
system besides the temperature in the previous subsection, which are similar to
those of an ideal gas. Thus the frame fields system in the Gaussian approxima-
tion can be seen as a system of frame fields gas, which manifests an underlying
statistical picture of Perelman’ s thermodynamic analogies of his functionals.

As convention, we take the temperature 7' = A;7 (eq. 73), D = 3, and replace
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A by Aj; this is equivalent to choosing a specific gauge of time for the thermal
equilibrium frame fields configuration.

When the spatial shrinking soliton M? is temporal static (dX° = 0) and in
thermal equilibrium, the partition function of the thermal ensemble of the frame
fields X can be given by the trace/integration of the density matrix:

Z.(7) =X / X u(X) = A, / @3N XA = py (4r)2,

and the normalized density u can be given by the 3-dimensional version of eq.
(45):

A
U, (X) B u(X) = me—)@/%-.

The partition function can also be consistently given by (35) with D = 3 in
thermal equilibrium:

47r/\§/3

3
Z (1) = s N.(M3)=3/2 _ exp (/ d3X u, logu, — 5) = )\3(471'7')3/2 =V (‘/2/3
3

where V3 = [d3* is the 3-volume with the constraint A;V3 = 1. The partition
function is identified with the partition function of the canonical ensemble of an
ideal gas (i.e., non-interacting frame fields gas in the lab) of temperature 1/3
and gas particle mass )\:1,,/ 3 The interactions are effectively absorbed into the

broadening of the density matrix and normalized mass of the frame fields gas
particles.

The physical picture of frame fields gas in thermal equilibrium lays a statistical
and physical foundation for Perelman’ s analogies between his functionals and
thermodynamic equations, as detailed below.

The internal energy of the frame fields gas can be given similarly to the standard
internal energy of an ideal gas:

given by the equipartition energy of translational motion in 3-space, where (52)
with D =3 and A — A3 have been used.

The fluctuation of the internal energy is given by
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(B%) — (B = = 5% = T =

The Fourier transform of the density u,(X) is given by
T e

since u satisfies the conjugate heat equation (23), so K? is the eigenvalue of the
Laplacian —4A + R of the 3-space, taking the value of the F-functional:

K? = Ag/d3x (RO + 4VU[?) = \yF,  u,(K?) = e Ns7F,

For a state taking energy A372F = E, the probability density of the state can
be rewritten as

’LL*(E) _ efE/A;;T _ efE/T7

which is the standard Boltzmann probability distribution of the state. Thus we
can see that the (Fourier-transformed) manifold density can be interpreted as
the thermal equilibrium canonical ensemble density of the frame fields.

The free energy is given by

1 3
3** — _B log Z* = —)\3’7' lOg Z* = _iABTIOg(Z’lﬂ-T)?

similar to the standard free energy of an ideal gas —%T logT up to a constant.

The minus H-functional of Boltzmann at an equilibrium limit and the thermal
entropy of the frame fields gas can be given by the Shannon entropy:

AN, =8, = =) /d3X u, logu, = g[l + log(4nT)],

similar to the thermal entropy of a fixed-volume ideal gas %logT + % up to a
constant. The thermal entropy can also be consistently given by the standard
formula:

dlogZ, 3
o 2

[1 + log(4nT)],

which is analogous to the fact that the W-functional is the Legendre transfor-
mation of the relative Shannon entropy with respect to 7—1. For this reason, the
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W-functional is also an entropy function related to the (minus) thermodynamic
entropy.

In summary, we have seen that, under general frame fields (coordinates) trans-
formation, the Shannon entropy anomaly N appearing in the partition function
(32) (or relative Shannon entropy N with respect to N,) has profound thermo-
dynamic interpretations. The Ricci flow of frame fields leads to non-equilibrium
and equilibrium thermodynamics of quantum spacetime. We summarize the
comparisons between them in Tables I and II.

Table I: Frame fields in general Ricci flow at non-flow-limit and non-equilibrium
thermodynamics.

Frame fields at non-Ricci-flow-limit Non-equilibrium thermodynamics
Relative Shannon entropy: Boltzmann H-function:

N = — [&*¥UX,t)logu(X,t) H(t) = [ d® p(v,t)log p(v,t)
Ricci flow parameter: t Newtonian time: t

Monotonicity: dN/dt = —F >0 H-theorem: dH /dt <0
Conjugate heat equation: Boltzmann equation of ideal gas:
Ou/ot = (—A + R)u Op/ot =—v-Vp

Table ITI: Frame fields in Gradient Shrinking Ricci Soliton (GSRS) configuration
and equilibrium thermodynamics of ideal gas.

Frame fields at Ricci-flow-limit Equilibrium thermodynamics of ideal
(GSRS) gas

Partition function: Partition function:

Z,(1) = M\ (477)3/? Z(T) = V4(2rmT)>/?

GSRS flow parameter: A;7 Temperature: T = 37!
Internal energy: E, = 32—7)\3F* = %)\37' Internal energy: E = %T
Manifold density: Canonical ensemble density:
U*<K) _ e*TKQ _ 67)\3TF p= efE/T

Free energy: Free energy:

F,=—Xstlog Z, = —3 g7 log(47T) F =-TlogZ(T)=—3TlogT
Shannon entropy: Thermodynamic entropy:
AN, = 3[1 + log(477)] S,=3(1+1logT)
W-functional: W = 7dN /dr + N First law: E—TS = F
Monotonicity: dN /dt >0 Second law: 4.5 > 0

V. Application to the Schwarzschild Black Hole

In this section, we apply the general statistical and thermodynamic interpre-
tation of the quantum frame fields to a physical gravitational system, as a
touchstone of quantum gravity, i.e., to understand the statistical origin of the
thermodynamics of the Schwarzschild black hole.
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A. The Temperature of a Schwarzschild Black Hole

The region in the vicinity of the origin of a Schwarzschild black hole is an
example of a classical static shrinking Ricci soliton. A rest observer distant
from it sees an approximate metric M3 x R, where the region in the vicinity of
the origin of the spatial part M3 is a shrinking Ricci soliton. The reason is as
follows: because the black hole satisfies Einstein’ s equation where the stress
tensor is a point-distributed matter at rest with mass m at the origin = 0 (as
seen from the distant rest observer):

1
uv igp,u

R R=8nGT,,, Ty=mé®(zx), T,;=0 (i,j=1,23),

where Latin indices i, j denote spatial indices in the following. Thus we have

R(z) = —87GT} = 8nGmd® (z).

From Einstein’ s equation we have the Ricci curvature of M3 proportional to
the metric of M3:

1
R ;(x) = 8nGT,; + §gin =8rGms® (x)g;; (i,j=1,2,3).

ij

This equation is nothing but a normalized shrinking Ricci soliton equation (43)
for M3:

Ry(w) = 285 59 0)

where 663 (x) plays the role of the 3-space energy density A5 in the vicinity of the
origin, satisfying [d®® §®)(x) = 1 as in eq. (74). Using the relation between
7 and temperature T' (73), we can directly read from the equation that the
temperature seen by the lab’ s infinitely distant rest observer is

1

T =0Y(x)r S’

which is the standard Hawking temperature of the Schwarzschild black hole seen
by a distant rest observer.

Is the vacuum region outside the origin of the black hole also a shrinking Ricci
soliton? One may naively think that the answer is no, since at the classical
level it seems R;; = 0 (not a shrinking soliton eq. (91)), as outside the origin is
just vacuum. But as discussed in the next subsection, we argue that this is not
true at the quantum level: if the vacuum and the vicinity region of the origin
are in thermal equilibrium, they must be shrinking Ricci solitons as a whole,
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ie., (R;;) = 5-9;; # 0, eq. (101) in the “vacuum” . The above result can be
extended to the “vacuum” region outside the origin; the price to pay is that the
“vacuum”is full of internal energy corresponding to the Hawking temperature. If
the whole spacetime has not yet reached thermal equilibrium, the configuration
must irreversibly continue flowing to a common thermal equilibrium fixed point
(a global shrinking Ricci soliton), leading to globally maximized entropy, as the
H-theorem asserts.

B. The Energy of a Schwarzschild Black Hole

In classical general relativity, the mass m is often mentioned as the ADM energy
of the black hole:

Expum = /d?’m Ty = /d?’m m5(3)(x)’

seen by the distant rest observer (with respect to the lab time z°). Here at
the quantum level, the coordinates or frame fields and spacetime are quantum
fluctuating, which gives rise to internal energy related to the periodicity of the
(Euclidean) lab time z° (i.e., 3 = 1/T). So, mathematically speaking, the
anomaly of the trace of the stress tensor will modify the total ADM mass at
the quantum level, see (36). Since the anomaly of the action of the frame fields
A3V, representing the spacetime part is always real, the internal energy of the
frame fields is given by (78):

dlog Z 3 3
* 08 2 167Gm’

in which we have considered the 3-space volume V; outside the origin is in ther-
mal equilibrium with the Hawking temperature at the origin (eq. 93), sharing
the same equilibrium temperature 7" in the 3-volume Vj.

We can see that the internal energy FE, is an extra contribution to the total
energy of the (black hole + “vacuum” ) system seen by the distant rest observer.
Essentially this term can be seen as a quantum correction or part of the trace
anomaly contribution to the stress tensor. Thus the total energy of the black
hole including the classical ADM energy and the quantum fluctuating internal
energy of the metric is

Mmpy = /d“ (Tyo) =m+E, =m+ Toram

where the classical stress tensor T}y, is formally replaced by its quantum expec-

tation value (Tp)) = mé® (z) + 15— As.
A quantum Equivalence Principle should assert that the total energy rather
than only the classical ADM mass contributes to gravitation.
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For a macroscopic classical black hole, m > /G, the first term (ADM energy)
dominates eq. (96):

Mmpp ~ M.

The second internal energy term becomes gradually non-negligible for a micro-
scopic quantum black hole. An important effect of the existence of the second
term in (96) is that for a microscopic quantum black hole, it makes the to-
tal energy bounded from below; the minimal energy is of order of the Planck
mass mpy > /3/16mG ~ O(mp), which seems to prevent the black hole from
evaporating into nothing.

Furthermore, the internal energy %T term contributing to the total energy mpy

and gravitation also demands that not only the vicinity of the origin of the
black hole is a shrinking soliton (as the previous subsection claims), but at
the quantum level the whole 3-space is also the same shrinking soliton (i.e.,
satisfying eq. (91) with the identical 7 globally and hence the same temperature
T everywhere for the whole 3-space), just replacing the 6®-density in eq. (93)
by the \;-density, which extends the §®-density at the origin to the outside
region (the “vacuum” ):

T,
T =X\7 = < §0>, with /d“ Ay = /d3r (Tyo)

for the whole thermal equilibrium 3-space, although at the classical level the
vacuum R;;(z # 0) = 0 seems not to be a shrinking soliton outside the origin.
The physical reason is transparent: the internal energy’ s contribution %T (Tho)
also plays the role of an additional source of gravity outside the origin. For the
whole 3-space with (T;,) # 0 and (7};) = 0, Einstein’ s equation for the whole
3-space is nothing but the Shrinking Ricci Soliton equation (91):

)= B ey s Ly

g..
Gij = A39i; = 27;] # 0,

in which (R) = —8rG(T}/) = 87G(T,,) # 0 is used in the “vacuum” outside the
origin. This equation is in fact the spatial components of the Gradient Shrinking
Ricei Soliton equation (43) where (R;;) = R;; + V,;V,f; the Gaussian/thermal
broadening of the density matrix u contributes to the classical curvature. The
vicinity region of the origin plus the “vacuum” outside the origin of the black
hole as a whole is nothing but globally a shrinking Ricci soliton.

The “vacuum” is not completely nothing at the quantum level but is full of
thermal particles (Tyg(x # 0)) # 0. The Hawking temperature is essentially
an Unruh effect; in a certain sense, the Gradient Shrinking Ricci soliton equa-
tion, eq. (101), might play a more fundamental role than Unruh’ s formula,
determining how local acceleration or gravitation gives rise to temperature.
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The internal energy of the spacetime frame fields is an additional and necessary
source of gravity. Although macroscopically it is too small to contribute, at the
quantum level its contribution is crucial for the 3-space in thermal equilibrium to
be exactly a global shrinking Ricci soliton. The thermal internal energy coming
from the quantum fluctuation of the 3-space gravitates normally as the quantum
Equivalence Principle asserts. Otherwise, we would face a paradox as follows.
If we consider a frame x having TW(:U) = 0 everywhere, then according to the
classical Einstein equation we have R, (z) = 0 everywhere. If we transform to
another accelerating frame ’, one expects T, (z) — T}, (2") = 0 everywhere.
However, according to the Equivalence Principle, in the accelerating frame x’
one should feel equivalent gravity R, (z") # 0. Clearly something is missing;
a new dimension of the Equivalence Principle must be considered. To solve
this paradox and retain the Equivalence Principle, a quantum effect (actually
the effect from the diffeomorphism anomaly such as the trace anomaly or the
Unruh effect) must be introduced so that the accelerating frame must create
particles from the “vacuum”and be thermal, which plays the role of an equivalent
gravitational source making R, (z') # 0. The Hawking temperature in the
internal energy term of eq. (96) is essentially the Unruh temperature playing
such a role. In this sense, the validity of the Equivalence Principle should be
extended to reference frames described by quantum states.

C. The Entropy of a Schwarzschild Black Hole

In the general framework, the entropy of the black hole comes from the uncer-
tainty or quantum fluctuation moment of the frame fields given by the manifold
density u; more precisely, the thermalized black hole entropy is measured by
the maximized Shannon entropy in terms of the probability distribution u of
the frame fields in the background of the black hole. So in this subsection,
we calculate the u density distributed around the Schwarzschild black hole and
then evaluate the corresponding entropy as a measure of the black hole entropy.
After a proper definition of a zero-point of the Shannon entropy, it yields the
standard Bekenstein-Hawking entropy.

For an observer in the distant lab rest frame, the contributions to the temporal
static u density around the black hole are twofold. Besides the thermal distri-
bution u, in the “vacuum” or bulk outside the black hole horizon, which gives
rise to the ideal gas entropy (85) as the background entropy, there is an addi-
tional @ density distributed mostly in an exterior thin shell near the horizon and
sparsely in the bulk outside the horizon, which we will focus on. The reason is
as follows. Because @ density satisfies the conjugate heat equation (23) on the
classical background of the black hole, and since the classical scalar curvature
R = 0 outside the horizon, and the temperature (equivalently the parameter
7 and the mass) can be seen as unchanged for the thermalized black hole, i.e.,
0u/0t = 0, the conjugate heat equation for @ is approximately given by the
4-Laplacian equation on the Schwarzschild black hole:
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Axu(X) =0, (|X[=rg).

Now the temporal static density @(X) plays a similar role to a solution of the
Klein-Gordon equation on the static background of the black hole. The ap-
proximation of the conjugate heat equation is equivalent to interpreting the
Klein-Gordon modes as a “first-quantization” probability density (not second-
quantization fields). As is well known, there are modes falling into the black
hole horizon and hence disappearing from the outside observer’ s view, just
like negative Klein-Gordon modes falling into negative energy states below the
ground state. In a flat background, the amplitudes of modes falling into and
going out of the horizon are identical. So in second quantization, the negative
mode falling into the horizon can be reinterpreted as a single anti-particle with
positive energy modes going out of the horizon with identical amplitude. How-
ever, in a curved background, for instance, the spacetime near the black hole
horizon, this statement is no longer true. The two amplitudes differ from each
other by a non-unitary equivalence factor. Thus the negative mode falling into
the black hole horizon can no longer be reinterpreted as a single anti-particle
mode going out, but rather as a multi-particle thermo-ensemble. In this situ-
ation, the density # describes the ensemble density of modes going exterior to
the horizon | X| > ry which can be seen by an outside observer.

By a routine calculation of the solution near the exterior black hole horizon
resembling a Rindler metric as a starting point, we denote the solution @(p),
where k represents the Fourier component/momentum in directions orthogonal
to the radial direction with p = log(r—ry), r the radius, r;; = 2Gm the horizon
radius. The equation becomes

0%
k ~ ~
90 + ke iy, = wiiy,

where w is the eigen-energy of the modes. Using a natural boundary condition
that @ vanishes at infinity, we can see that each transverse Fourier mode @, can
be considered as a free 1 + 1 dimensional quantum field confined in a box, one
wall of the box at the reflecting boundary p, = loge, where ¢, ~ 0, and the
other wall provided by the potential

V(p) = k?e%,

which becomes large V(p) > 1 at p > —logk. So we can approximate the
potential by the second wall at p,, = —logk.

Thus the length of the box is given by

Ap = p,, — po = —log(epk).
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The thickness of the horizon is about Ar ~ e®? ~ ¢,k.

The density 4 (p) is located in the box p € (py, p,,). In other words, the solution
of @ density is located mainly in a thin shell near the horizon r € (5, 7y + €k).
Furthermore, the modes k are assumed normally distributed (with a tiny width
described by the parameter 7). In this picture, without solving the equation,
we can approximately write down the natural solution as

ty,(r) ~ 0(|k|)S(r —rg),
while for finite and small 7, we have a nearly Gaussian form:

o~ (r=rg)?/(4m|kf27) o~ (r—rg)?/(47)

. (r) ~ 0(|k|) - Ak :6(|k|)~W (r>ry).

The exterior horizon solution can be considered as a standing wave solution as
the superposition of modes falling into and coming out of the black hole horizon.
Then we have (up to a constant)

~ — log(|k|?T).

log @y, (1) ’er
A routine calculation of the relative Shannon entropy or W-functional gives the
entropy of each k-mode in the limit where the width 7 is very small:

o (r—rg)?/(47)

i log([k[*) = 6(|k[) Alog(|k[*T),

AN (i) = —)\3/d3X iy, log i), = 5(\k|)/ Amr2dr

H

where A = 47T7’§{ is the area of the horizon.

It is natural to assume the momentum £ in the horizon shell is homogeneous,
|k| = |k,| = |k, |, where k, is the momentum in the radial direction and k&, in
the transverse directions on the horizon. When we integrate over all k-modes,
we have the total relative Shannon entropy weakly depending on 7:

o o dk,5(k, A k2T

where the transverse momentum is effectively cut off at an inverse of a funda-
mental UV length scale €2.

The relative Shannon entropy gives an area law for the black hole entropy. To
determine the UV length cutoff €2, we need to consider the scale at which
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the relative entropy is defined to be zero (not only is the black hole locally in
thermal equilibrium, but also the asymptotic background spacetime is globally
in thermal equilibrium). Thus we need to consider the flow of the asymptotic
background spacetime. A natural choice of a thermal equilibrium Ricci flow
limit of the background spacetime (in which the black hole is embedded) is an
asymptotic homogeneous and isotropic Hubble universe with scalar curvature
Ry, = D(D — 1)H? at scale tyy, where we could consider and normalize the
relative entropy to be zero (leaving only the background ideal gas entropy), since
there is no information about local shape distortions in such a GSRS background
due to the vanishing of its Weyl curvature, while the global curvature is non-
zero which encodes information about its global volume shrinking. Under this
definition, taking the normalized Shrinking Ricci soliton equation (43) and (22),
we have

6472
0=12H? — ——,
0 €2
which, using the critical density (68), gives a natural cutoff corresponding to
the scale tyy:

— _ 1 2_]{;72_ 1
TUv——th—m7 €= WS e

This is exactly the Planck scale, which is a natural cutoff scale induced from the
Hubble scale Hy and A of the framework. However, it is worth stressing that
the Planck scale is not the absolute fundamental scale of the theory; it only has
meaning with respect to the asymptotic Hubble scale. The only fundamental
scale of the theory is the critical density A, which is given by a combination of
both the Planck scale and Hubble scale, but each individual Planck or Hubble
scale does not have absolute meaning. The UV (Planck) cutoff scale could tend
to infinity while the complementary (Hubble) scale correspondingly tends to
zero (asymptotic flat background), keeping A finite and fixed.

At this point, if we define a zero-relative-entropy for an asymptotic Hubble uni-
verse of scalar curvature R, then the black hole in this asymptotic background
has a non-zero thermodynamic entropy:

S =-X\N(u) = —
3 (u) 4G )

up to the bulk background entropy A;N, = S, < S, eq. (86). Combining the

relative Shannon entropy N and the bulk thermal background entropy N,, and

using the total partition function eq. (35), Z(M3) = e*sN=3/2 = Aa(N+N.)=3/2

we can also reproduce the total energy of the black hole in (96):
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T,

in which eq. (47) and A = 47r%; = 1671G?*m? = 3% /(47) have been used.

Different from the holographic idea that information or entropy is coded in
the (infinitely thin and 2-dimensional) horizon or boundary of a gravitational
system, in this framework where the coordinates of the spacetime geometry are
smeared by quantum fluctuations, there is no mathematically precise notion
of an infinitely thin boundary in a “density manifold” in general; it is just a
semi-classical concept. Note that the manifold density v is mainly distributed
at the horizon with a finite thickness (although very small), which contributes
most of the anomaly and entropy to the black hole. Thus although the entropy
(113) is proportional to the area, the geometric gravitational entropy given by
the framework essentially comes from the 3-volume (note the 3D integral in
eq. (108) and eq. (110)) rather than the 2-surface boundary. Or in equivalent
words, here the area of the horizon is fluctuating (due to its finite thickness)
rather than fixed, while the total energy and hence the temperature are fixed.
In this sense, it is a canonical ensemble rather than an area ensemble as some
ideas might suggest.

VI. Conclusions

In this paper, we have proposed a statistical field theory underlying Perelman’
s seminal analogies between his geometric functionals and thermodynamic func-
tions. The theory is based on a d = 4 — € quantum non-linear sigma model,
interpreted as a quantum reference frame. When we quantize the theory at the
Gaussian approximation, the wavefunction W(X) and hence the density matrix
u(X) = U*(X)¥(X) (eq. 13) can be written down explicitly.

Based on the density matrix, the Ricci flow of the frame fields (10) and the
generalized Ricci-DeTurck flow (19) of the frame fields endowed with the density
matrix are discussed. Furthermore, we find that the density matrix has profound
statistical and geometric meanings: using it, the spacetime (M P, g) as the target
space of the NLSM is generalized to a density spacetime (M P, g,u). The density
matrix u(X, 7), satisfying a conjugate heat equation (23), not only describes a
(coarse-grained) probability density of finding frame fields in a local volume, but
also describes a volume comparison between a local volume and a fiducial one.

Due to the non-isometric nature of the Ricci or Ricci-DeTurck flow, classical
diffeomorphism is broken down at the quantum level. Through functional inte-
gral quantization, the change of the measure of the functional integral can be
expressed using a Shannon entropy N in terms of the density matrix u(X, 7).
The induced trace anomaly and its relation to anomalies in conventional gravity
theories are also discussed. As the Shannon entropy flows monotonically to its
maximal value N, in a limit called Gradient Shrinking Ricci Soliton (GSRS),
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a relative density @ and relative Shannon entropy N=N- N, can be de-
fined with respect to the flow limit. The relative Shannon entropy provides a
statistical interpretation underlying Perelman’ s partition function (47). The
monotonicity of N along the Ricci flow yields an analogous H-theorem (50) for
the frame fields system. As a side effect, the gravitational meaning of the theory
is also discussed, in which a cosmological constant —\v(B2%)) ~ 0.8p, as a UV
counterterm of the anomaly must be introduced.

We find that a temporal static GSRS, M3, as a 3-space slice of the 4-spacetime
GSRS, M* = M3 x R, is in a thermal equilibrium state, in which the tempera-
ture is proportional to the global 7 parameter of M3 (73) up to a 3-space energy
density A; with normalization [ d**\; = 1. The temperature and A; both de-
pend on the choice of time. In the sense that M3 is thermal, its Ricci soliton
equation (91) or quantum (indistinguishable from thermal) fluctuation (41) can
be considered as a generalization of Unruh’ s formula, relating temperature to
local acceleration or gravitation. Based on the statistical interpretation of the
density matrix u(X,7), we find that the thermodynamic partition function (75)
at the Gaussian approximation is just a partition function of an ideal gas of
frame fields. In this physical picture of a canonical ensemble of frame fields gas,
several thermodynamic functions, including internal energy (78), free energy
(84), thermodynamic entropy (85), and ensemble density (83), can be calcu-
lated explicitly and agree with Perelman’ s formulae, providing an underlying
statistical foundation for Perelman’ s analogous functionals.

We find that the statistical field theory of quantum reference frames can be used
to provide a possible microscopic origin of spacetime thermodynamics. The stan-
dard results of the thermodynamics of the Schwarzschild black hole, including
the Hawking temperature, energy, and Bekenstein-Hawking entropy, can be
successfully reproduced in this framework. We find that when the fluctuation
internal energy of the metric is taken into account in the total energy, the en-
ergy of the black hole has a lower bound of order of the Planck energy, which
prevents the quantum black hole from evaporating into nothing. The internal
energy or related temperature of the spacetime frame fields is an additional
source of gravity; although macroscopically it is very small, at the quantum
level its contribution is necessary for a thermal equilibrium 3-space to be ex-
actly a GSRS; otherwise, the Equivalence Principle would break down. In this
paper, the extended quantum Equivalence Principle plays a fundamental role
as a bridge from the quantum reference frame theory (as a statistical field or
quantum field theory on the base/lab spacetime) to quantum gravity.

To summarize, this paper can be seen as an attempt to discuss the deep relations
between three fundamental themes—the diffeomorphism anomaly, gravity, and
spacetime thermodynamics—based on the statistical field theory of quantum
spacetime reference frames and the quantum Equivalence Principle.

In the spirit of classical general relativity, if we trust the Equivalence Principle,
one cannot in principle determine whether one is in an absolute accelerating
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frame or in an absolute gravitational background, which leads to a general
covariance principle or diffeomorphism invariance of the gravitational theory.
However, at the quantum level the issue is more subtle. If an observer in an
accelerating frame sees the Unruh effect, i.e., thermal particles are created in
the “vacuum” , this seems to lead to unitary inequivalence between the vac-
uums of, for instance, an inertial frame and an accelerating frame, and hence
diffeomorphism invariance appears to break down, as discussed as the anomaly
in this paper. Our treatment of the anomaly is that it is only canceled in an
observer’ s lab up to UV scale, where the frame can be considered classical, rigid,
and cold, while at general scales the anomaly is not completely canceled.

Could one determine that he/she is in an absolute accelerating frame by detect-
ing the anomaly (Shannon N term) at general scale (e.g., by thermodynamic
experiments detecting vacuum thermal particle creation and hence finding the
non-unitarity)? We argue that if the answer is still “NO!” in the spirit of general
relativity, then the anomaly term coming from a quantum general coordinate
transformation must also be equivalently interpreted as the effects of spacetime
thermodynamics and gravity. Because the second-order moment fluctuation of
the quantum coordinates or a non-trivial manifold density u, which gives rise
to the diffeomorphism anomaly, also contributes to other second-order quanti-
ties (series coefficients at second spacetime derivative) such as (i) acceleration
(second time derivative of coordinates, e.g., leading to uniform accelerated ex-
pansion or other acceleration discrepancies in the universe [1]), (ii) gravity or
curvature (second spacetime derivative of metric, e.g., see (9) and (18)), and
(iii) thermal broadening (second spatial derivative of the manifold density or
ensemble density, e.g., see (41) and (73)) at the same (second) order. In this
sense, the validity of the classical Equivalence Principle would be generalized
to the quantum level to incorporate the effects of quantum fluctuation of space-
time coordinates or frame fields, so that one still cannot determine and distin-
guish whether he/she is in an accelerating frame, in a gravitational field, or in
a thermal spacetime (as a new dimension of the Equivalence Principle); these
three things have no absolute physical meaning and are indistinguishable in this
framework. The classical Equivalence Principle asserts the equivalence of the
first two things at first order (mean level); the quantum Equivalence Principle
asserts the equivalence of the three things even at second order (variance level),
and even higher orders.
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