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Abstract
Using FY2E satellite data, Doppler weather radar products, conventional upper-
air and surface observational data, and NCEP (0.25°$×0.25°)𝑟𝑒𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠𝑑𝑎𝑡𝑎𝑓𝑟𝑜𝑚𝑡ℎ𝑒𝑈𝑆𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐶𝑒𝑛𝑡𝑒𝑟𝑠𝑓𝑜𝑟𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, 𝑎𝑐𝑜𝑚𝑝𝑟𝑒ℎ𝑒𝑛𝑠𝑖𝑣𝑒𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠𝑤𝑎𝑠𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑒𝑑𝑜𝑛𝑎𝑛𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑠𝑛𝑜𝑤𝑠𝑡𝑜𝑟𝑚𝑒𝑣𝑒𝑛𝑡𝑖𝑛𝑤𝑒𝑠𝑡𝑒𝑟𝑛𝑆𝑜𝑢𝑡ℎ𝑒𝑟𝑛𝑋𝑖𝑛𝑗𝑖𝑎𝑛𝑔𝑓𝑟𝑜𝑚𝑀𝑎𝑟𝑐ℎ3𝑡𝑜6, 2017.𝑇 ℎ𝑒𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑡ℎ𝑎𝑡𝑡ℎ𝑒500ℎ𝑃𝑎𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝐴𝑠𝑖𝑎𝑛𝑙𝑜𝑤𝑣𝑜𝑟𝑡𝑒𝑥𝑠𝑒𝑟𝑣𝑒𝑑𝑎𝑠𝑡ℎ𝑒𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑖𝑛𝑔𝑠𝑦𝑠𝑡𝑒𝑚𝑓𝑜𝑟𝑡ℎ𝑖𝑠𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑠𝑛𝑜𝑤𝑠𝑡𝑜𝑟𝑚.𝑊𝑎𝑡𝑒𝑟𝑣𝑎𝑝𝑜𝑟𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑𝑤𝑖𝑡ℎ𝑡ℎ𝑒𝑠𝑛𝑜𝑤𝑠𝑡𝑜𝑟𝑚𝑝𝑟𝑖𝑚𝑎𝑟𝑖𝑙𝑦𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑡ℎ𝑟𝑒𝑒𝑝𝑎𝑡ℎ𝑤𝑎𝑦𝑠 ∶
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700ℎ𝑃 𝑎𝑙𝑖𝑓𝑡𝑒𝑑𝑡ℎ𝑒𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑙𝑦𝑤𝑎𝑟𝑚𝑎𝑛𝑑𝑚𝑜𝑖𝑠𝑡𝑎𝑖𝑟𝑖𝑛𝑤𝑒𝑠𝑡𝑒𝑟𝑛𝑆𝑜𝑢𝑡ℎ𝑒𝑟𝑛𝑋𝑖𝑛𝑗𝑖𝑎𝑛𝑔𝑡𝑜𝑎𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒, 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖𝑛𝑔𝑎𝑠𝑎"𝑐𝑜𝑙𝑑𝑝𝑎𝑑"; 𝑜𝑛𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒𝑐𝑙𝑜𝑢𝑑𝑖𝑚𝑎𝑔𝑒𝑟𝑦, 𝑡ℎ𝑒𝑠𝑛𝑜𝑤𝑐𝑙𝑜𝑢𝑑𝑏𝑎𝑛𝑑𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑𝑚𝑒𝑠𝑜−�$-
scale convective cloud clusters with black body temperature (TBB) <-65 ℃ and
scales ranging from 80 to 200 km; radar echoes were characterized by stratiform
echoes interspersed with convective echoes, with maximum reflectivity >40
dBZ and echo top height >6 km; further analysis of geostrophic absolute
momentum (Mg) and pseudo-equivalent potential temperature (�se) revealed
that slantwise convection resulting from conditional symmetric instability led
to the occurrence of heavy snowfall.
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Abstract
Based on high-resolution radiosonde observation data, national surface weather
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ℎ^{-1}$. Further analysis reveals that this extreme snowstorm exhibited charac-
teristics of elevated convection in the cold season. Latitude-height cross-sections
of geostrophic absolute momentum (M_g) and pseudo-equivalent potential
temperature (�_{se}) along 75°15�E (through the Wuqia station, the location
of maximum snowfall) show that between 700–550 hPa, the slope of �_{se} was
greater than that of M_g, satisfying the criterion for conditional symmetric
instability. It is preliminarily concluded that the extreme snowfall was caused
by slantwise convection triggered by conditional symmetric instability.

Keywords: snowstorm; low-level jet; instability mechanism; slantwise convec-
tion; western southern Xinjiang

1. Data and Methods
This study utilizes conventional sounding and surface observation data from
the Kizilsu Kirghiz Autonomous Prefecture (hereafter referred to as Kezhou)
and Kashgar region, NCEP (0.25°$×$0.25°) reanalysis data, FY2E satellite
data, and products from the Kashgar Doppler weather radar station. Synoptic-
dynamic methods were employed to analyze the atmospheric circulation, vertical
configuration, and dynamic characteristics of the extreme snowstorm. The wa-
ter vapor budget was calculated for the region bounded by 35°–43°N, 73°–80°E,
with the western boundary along 73°E, eastern boundary along 80°E, southern
boundary along 35°N, and northern boundary along 43°N. Water vapor trans-
port and budget analysis were performed for three layers: surface to 700 hPa
(low-level), 700–500 hPa (mid-level), and 500–300 hPa (high-level). The 500–300
hPa layer was selected for the high-level analysis because water vapor content
above 300 hPa is negligible. Satellite infrared cloud images were processed to
obtain cloud-top black body temperature (TBB), and radar data were processed
using GR2Analyst software. Snowfall intensity classifications follow Xinjiang lo-
cal standards: 6.1–12.0 mm as heavy snow, 12.1–24.0 mm as severe snowstorm,
and $�$24.1 mm as extreme snowstorm, with the daily snowfall period defined
from 20:00 to 20:00 Beijing Time.

2. Results and Analysis
2.1 Snowstorm Observations and Extreme Characteristics

From March 3–6, 2017, a strong snowfall event occurred from west to east
across Kezhou and Kashgar in western southern Xinjiang (Fig. 1). The cumu-
lative snowfall exceeded 12.0 mm at multiple stations. Both Wuqia station and
Harabulak Township station in Akqi County broke historical records. Wuqia
station recorded 18.6 mm of snowfall, approaching its annual average precipi-
tation, with a maximum daily snowfall of 15.0 mm—the highest since records
began. Harabulak Township station recorded 23.2 mm, ranking first historically
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for the same period, with both cumulative and daily snowfall reaching record
highs since station establishment. Additionally, Kerekeqike Township in Akto
County, Akqi County, and Turugart Pass station experienced severe snowstorms
with snowfall amounts of 16.4 mm, 15.6 mm, and 14.8 mm, respectively. Maxi-
mum snow depth increases were 28.0 cm at Wuqia, 37.5 cm at Harabulak, and
33.0 cm at Turugart—all record highs for the same period—severely impacting
local agriculture, animal husbandry, and transportation.

The snowstorm exhibited high hourly intensity, with the strongest period oc-
curring from the early morning through daytime on March 4. At Wuqia station,
hourly snowfall rates reached 2.1 mm・h−1 (07:00–09:00) and 2.6 mm・h−1 (13:00–
15:00). Harabulak station recorded the maximum hourly intensity of 3.1 mm・
h−1 during 07:00–09:00.

2.2 Large-scale Circulation Background

The primary influence system for this snowstorm was a Central Asian low vor-
tex. At 500 hPa, a closed vortex formed over the Tashkent region at 08:00 on
March 3, with a central geopotential height of 548 dagpm and a -32°C cold
center. Influenced by an unstable shortwave trough over Europe, the Caspian
Sea ridge retreated southeastward, and the low vortex continued to deepen. Its
southwestern airflow covered the Pamir Plateau, Kezhou, Kashgar, and western
Hotan regions. The maintenance of this southwestern flow favored positive vor-
ticity advection, promoting vertical motion development. By 20:00 on March 4,
as the system shifted to northwesterly flow, the snowfall process ended.

At 850 hPa, a Mongolian high-pressure center with intensity of 1040 hPa slowly
moved eastward, creating a north-south pressure gradient of 17.5 hPa across
northern and southern Xinjiang. By 20:00 on March 4, the high strengthened
to 1045 hPa, with the pressure gradient increasing to 27.5 hPa. The surface
pressure field exhibited high pressure in the north and east, and low pressure in
the south and west, establishing an “eastward intrusion”pattern. The easterly
winds in the Tarim Basin gradually intensified, with a low-level easterly jet of
14 m・s−1 developing at Ruoqiang station. This easterly jet transported cold air
from eastern Xinjiang into the Tarim Basin, creating a temperature configura-
tion with warm air in the basin and cold air in eastern regions, with an 850 hPa
temperature difference of 16°C. Concurrently, a northwest-southeast oriented
shear line formed between Kashgar and Hotan, where cold and warm air masses
intersected for an extended period. The snowfall area was located near this
shear line and within the convergence zone between easterly and southeasterly
winds at 700–850 hPa, which favored moisture convergence and strong snowfall
over the eastern Pamir Plateau. The cold air “pad”from the eastward intru-
sion provided favorable synoptic-scale conditions for the instability mechanisms
analyzed below.
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2.3 Water Vapor Characteristics Analysis

Three moisture transport pathways supplied water vapor for this snowstorm: a
westerly path from the Caspian Sea region, a southerly path from southern Cen-
tral Asia, and an easterly path from the eastern Tarim Basin. The water vapor
budget analysis (Fig. 3) shows that in the middle-upper layers, water vapor en-
tered through the western and southern boundaries via westerly and southerly
flows, while in the lower-middle layers, water vapor entered through the east-
ern boundary via easterly flow. Throughout the event, net water vapor input
through the western and southern boundaries in the middle-upper layers was
16.12$×10^{6}$ kg・s−1 and 19.57$×10^{6}$ kg・s−1, respectively, while input
through the eastern boundary in the lower-middle layers was 29.73$×10^{6}$
kg・s−1. This indicates that the westerly and southerly paths provided the pri-
mary moisture source, though the easterly path also contributed significantly.

Water vapor transport at the western and southern boundaries peaked at the
onset of snowfall, while easterly transport strengthened gradually. The easterly
water vapor transport intensified most strongly at 08:00 on March 4, corre-
sponding to the period of maximum snowfall intensity. After weakening at
20:00 on March 4, water vapor transport through all boundaries strengthened
again, corresponding to the second intense snowfall period. Thus, the west-
erly and southerly moisture transport provided a stable moisture environment,
while the easterly transport showed close correspondence with snowfall intensity
variations.

2.4 Mesoscale System Characteristics

2.4.1 Satellite Cloud Image Features Satellite cloud images reveal the
evolution of cloud systems and effectively monitor the development of mesoscale
cloud clusters during heavy snowfall periods. At 11:30 on March 3, a cloud
band along the western border of southern Xinjiang began moving eastward
and northward toward Kezhou. By 22:30, this band developed into a 1000 km-
long stratiform cloud system with TBB<-30°C, covering an expanded area. As
the system moved over Kashgar and Kezhou, snowfall began but with relatively
low intensity.

From 01:30 on March 4, the cloud system intensified significantly, with TBB
dropping below -45°C over most of the area and strong centers reaching TBB<-
55°C. By 07:00, TBB in some centers fell below -60°C. During 01:30–09:30,
when TBB<-45°C, snowfall intensity increased markedly, with Wuqia station
recording 2.3 mm・h−1. At 09:00, Harabulak station reached its maximum hourly
intensity of 3.1 mm・h−1. At 15:00, a nearly circular mesoscale cloud cluster
about 80 km across with TBB<-60°C appeared over central Kezhou, producing
hourly snowfall rates exceeding 1.5 mm・h−1. The development, movement, and
dissipation of these mesoscale convective cloud clusters corresponded well with
the timing and location of heavy snowfall, with multiple TBB<-45°C clusters
playing a decisive role in producing intense snowfall.
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2.4.2 Radar Echo Characteristics Analysis of Kashgar Doppler radar data
using GR2Analyst software reveals three evolutionary stages: development, ma-
turity, and dissipation.

Development stage (00:00–04:00 on March 4): Relatively strong strat-
iform echoes appeared northwest and west of the radar station, with several
embedded convective cells. The radial velocity field showed easterly flow at low
levels, with a convergence line between easterly and westerly winds near the
station.

Maturity stage (04:00–06:00 on March 4): As new echoes continuously
merged into the stratiform echo from the southwest, the echo area expanded.
Reflectivity factors exceeded 40 dBZ near 3 km altitude, with echo tops ap-
proaching 6 km. At 05:00, Akto County’s Kerekeqike Township station recorded
its maximum hourly snowfall intensity. The vertical structure showed strong
echo columns near the surface, with the strongest echoes reaching the ground,
indicating ongoing or persistent snowfall.

Dissipation stage (06:00–14:00 on March 4): After 06:00, the area of
convective cells gradually decreased. By 11:00, the stratiform echo had dissi-
pated into banded and cellular echoes with obvious gaps and weaker intensity.
By 14:00, only scattered echoes below 15 dBZ remained, and the snowstorm
essentially ended.

2.5 Dynamic Conditions and Instability Mechanism Analysis

Both satellite imagery (mesoscale convective cloud clusters) and radar echoes
(convective cells with reflectivity >45 dBZ) indicate that this snowstorm pos-
sessed distinct convective characteristics, which are rare in spring compared to
summer. Therefore, analyzing the dynamic lifting conditions and instability
mechanisms is essential.

2.5.1 Dynamic Lifting Conditions Key parameters for atmospheric dy-
namic processes include divergence, vorticity, and vertical motion. Divergence
describes atmospheric convergence and divergence, vorticity describes rotational
motion, and vertical motion provides the primary driving force for snowstorms.

Cross-sections of vorticity, divergence, and vertical velocity along 75°15�E (Fig.
7) show that before snowfall began, a divergence zone existed above 500 hPa
over the snowstorm area (38°–41°N), with convergence below 700 hPa. At 20:00
on March 3, low-level convergence intensified rapidly, with a -10$×10^{-5}$
s−1 convergence center below 700 hPa and a 12$×10^{-5}$ s−1 divergence cen-
ter above 500 hPa, establishing a typical lower-level convergence/upper-level
divergence pattern. This configuration enhanced vertical motion throughout
the troposphere, which persisted until 08:00 on March 4, corresponding to the
strongest snowfall period.

Similarly, the vorticity zone over the snowfall area gradually intensified and ex-
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panded. By 20:00 on March 3, a positive vorticity center of 10$×10^{-5}$ s−1

existed at 500 hPa, strengthening to 25$×10^{-5}$ s−1 by 02:00 on March 4,
with the entire column becoming positively vortical. This favorable configura-
tion of divergence and vorticity fields enhanced vertical motion and increased
snowfall intensity.

2.5.2 Instability Mechanism Analysis Since lifting and thermal conditions
in winter are weaker than in summer, vertical convection is difficult to develop.
However, slantwise convection is more easily triggered under conditional sym-
metric instability (CSI), where even small lifting can initiate convection if the
atmosphere is saturated and slantwise ascent exists. Does this snowstorm belong
to this mechanism? Further analysis of CSI provides an answer.

The strongest snowfall occurred from the early morning through daytime on
March 4. The 08:00 sounding at Kashgar station (Fig. 8) shows easterly winds
below 500 hPa, transitioning to southwesterly winds at 15 m・s−1 around 600
hPa. The 0–6 km wind shear vector reached 22 m・s−1, with strong vertical
wind shear and baroclinicity. The temperature-dewpoint difference in the 700–
600 hPa layer was only 1–2°C, indicating a near-saturated layer. The convective
available potential energy (CAPE) increased significantly from 20:00 on March
3 to 08:00 on March 4, suggesting enhanced convective potential. An inversion
layer existed at 900–800 hPa, which, combined with the circulation analysis,
indicates that cold air from the east formed a“cold pad”near the surface while
relatively warm and moist air existed above. This configuration is characteristic
of elevated convection in the cold season.

To diagnose CSI, we examine the latitude-height cross-section of geostrophic ab-
solute momentum (M_g) and pseudo-equivalent potential temperature (�_{se})
along 75°15�E (through Wuqia station, the maximum snowfall center). During
the snowstorm, between 700–550 hPa, the slope of �_{se} exceeded that of M_g
(Fig. 8), satisfying the CSI criterion. This indicates that the extreme snowfall
resulted from slantwise convection triggered by conditional symmetric instabil-
ity.

3. Conclusions
Using multi-source data, this study comprehensively analyzes the synoptic back-
ground, water vapor conditions, and triggering mechanisms of an extreme spring
snowstorm in western southern Xinjiang, reaching the following conclusions:

1) This extreme snowstorm resulted from the interaction of multiple-scale
weather systems. The Central Asian low vortex at 500 hPa was the pri-
mary influence system, with its southwestern flow guiding warm moist air
from southern Central Asia northward and providing positive vorticity
advection favorable for vertical motion. The “eastward intrusion”of cold
air formed a low-level easterly jet that converged over western southern
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Xinjiang, creating a “wedge”that lifted relatively warm and moist air to
a certain height and formed a near-surface “cold pad.”

2) Three moisture transport pathways existed: a westerly path from the
Caspian Sea region, a southerly path from southern Central Asia, and
an easterly path from the eastern Tarim Basin. The water vapor bud-
get shows net input through the western and southern boundaries in
the middle-upper layers, and through the eastern boundary in the lower-
middle layers. The intensity variation of easterly moisture transport cor-
responded well with snowfall intensity changes.

3) Both satellite and radar data revealed convective characteristics. The
development, movement, and dissipation of meso-𝛽-scale convective cloud
clusters with TBB<-65°C and scales of 80–200 km corresponded well with
the timing and location of heavy snowfall, representing the primary cause
of high snowfall intensity. Although radar echoes were predominantly
stratiform (15–25 dBZ), embedded convective blocks exhibited reflectivity
factors exceeding 40 dBZ with echo tops above 5 km, comparable to weak
summer convective precipitation.

4) This snowstorm exhibited characteristics of elevated convection in the cold
season. The Kashgar sounding showed easterly cold flow at low levels and
warm moist southerly flow aloft, with an inversion layer at 900–800 hPa.
Cross-sections of M_g and �_{se} revealed that between 700–550 hPa,
the slope of �_{se} exceeded that of M_g, satisfying the CSI criterion. It
is preliminarily determined that slantwise convection triggered by condi-
tional symmetric instability caused the extreme snowfall. The presence
of strong vertical velocity centers in both lower and middle-upper levels,
differing from previous studies, may be related to slantwise convection
development due to CSI.
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