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Abstract
‘The spectral leakage (SL) from windowing and the picket fence effect (PEF)
from discretization’have been among the standard contents in textbooks for
many decades. The SL and PEF would cause the distortions in amplitude, fre-
quency, and phase of signals, which have always been of concern, and attempts
have been made to solve them. This paper proposes two novel decomposition
theorems that can totally eliminate the SL and PEF, they could broaden the
knowledge of signal processing. First, two generalized eigenvalue equations are
constructed for multifrequency discrete real signals and complex signals. The
two decomposition theorems are then proved. On these bases, exact decom-
position methods for real and complex signals are proposed. For a noise-free
multifrequency real signal with m sinusoidal components, the frequency, ampli-
tude, and phase of each component can be exactly calculated by using just 4m–
1 discrete values and its second-order derivatives. For a multifrequency com-
plex signal, only 2m–1 discrete values and its first-order derivatives are needed.
The numerical experiments show that the proposed methods have very high
resolution, and the sampling rate does not necessarily obey the Nyquist sam-
pling theorem. With noisy signals, the proposed methods have extraordinary
accuracy.
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Abstract
For many decades, spectral leakage (SL) from windowing and the picket fence
effect (PEF) from discretization have been standard topics in textbooks. These
phenomena cause distortions in the amplitude, frequency, and phase of signals,
which have long been a concern, and numerous attempts have been made to
address them. This paper proposes two novel decomposition theorems that can
completely eliminate SL and PEF, thereby broadening the knowledge base of
signal processing. First, two generalized eigenvalue equations are constructed
for multifrequency discrete real signals and complex signals, and the two decom-
position theorems are then proved. On this basis, exact decomposition methods
for real and complex signals are proposed. For a noise-free multifrequency real
signal with 𝑚 sinusoidal components, the frequency, amplitude, and phase of
each component can be calculated exactly using just 4𝑚 − 1 discrete values and
their second-order derivatives. For a multifrequency complex signal, only 2𝑚−1
discrete values and their first-order derivatives are needed. Numerical experi-
ments demonstrate that the proposed methods possess very high resolution, and
the sampling rate does not necessarily need to obey the Nyquist sampling the-
orem. For noisy signals, the proposed methods exhibit extraordinary accuracy.

Keywords: Exact decomposition; Multifrequency sinusoidal signal; Discrete
real signal; Discrete complex signal; Decomposition theorem; Generalized eigen-
value equation

1. Introduction
Since Cooley and Tukey proposed the fast Fourier transform (FFT) algorithm in
1965 [?, ?], the technique has become indispensable in electronics, communica-
tions, signal analysis, digital image and audio processing, and many other fields
[?, ?]. However, when performing the FFT algorithm, distortions in amplitude,
frequency, and phase—caused by spectral leakage (SL) due to signal truncation
and the picket fence effect (PEF) due to frequency discretization—are inevitable.
These issues have long been a concern, and numerous attempts have been made
to solve them.

In 1970, Rife and Vincent studied the correction of frequency and level measure-
ments of tones using the discrete Fourier transform (DFT) [?], and many scholars
have since investigated this issue [?]. Interpolation techniques are among the
most studied and widely applied methods in many engineering fields \cite{4–
10}. These techniques refer to interpolated DFT (IpDFT) or interpolated FFT
(IpFFT), which reduce SL and PEF through windowing and interpolation, re-
spectively. Generally, windows with maximum side lobe decay efficiently reduce
SL; thus, the Hanning window is commonly used [?, ?, ?]. By weighting the
discrete signals before performing DFT and FFT according to the distribution
of spectral lines in the windows, the PEF is minimized, and accurate amplitudes,
frequencies, and phases of the signal components can be computed \cite{4–10}.
IpDFT and IpFFT can be implemented quickly and easily; however, their re-
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sults are not accurate when sinusoids are not well separated in frequency \cite{5–
8}. Weighted phase averaging (WPA) is another popular correction technique
for FFT \cite{11–15}. Relying on weighted linear regression of the phases,
WPA averages the weighted phase estimators obtained by FFT within different
nonoverlapping segments of the signals. WPA has the advantage of accurately
calculating frequencies and phases, but amplitudes remain dependent on the
windows. Many other correction techniques exist, such as the phase difference
correction method [?] and the sliding-window DFT method [?, ?, ?]. All these
correction techniques have their respective advantages and disadvantages.

Distinct from techniques based on DFT and FFT, matrix-based singular value
decomposition (SVD) and singular spectral decomposition (SSD) aim to rep-
resent signals as a linear superposition of elementary variable modes without
requiring harmonic components \cite{19–22}. These techniques do not provide
spectral estimators but serve as powerful denoising filters capable of separat-
ing autocoherent features, such as anharmonic oscillations and quasiperiodic
phenomena, from random features. They are non-parametric techniques.

Other commonly used techniques for extracting signal features include the
wavelet transform (WT) [?, ?], Hilbert-Huang transform (HHT) [?], estimation
of signal parameters via rotational invariance technique (ESPRIT) [?, ?], and
multiple signal classification (MUSIC) [?, ?]. However, it is impossible to
exactly compute the frequencies, amplitudes, and phases of multifrequency
discrete signals using these techniques.

This paper constructs generalized eigenvalue equations and proves decompo-
sition theorems for multifrequency discrete real signals and complex signals.
Based on these two decomposition theorems, decomposition methods for real
and complex signals are proposed. For a noise-free real signal with 𝑚 sinu-
soidal components, the frequency, amplitude, and phase of each component can
be calculated exactly using just 4𝑚 − 1 discrete values and their second-order
derivatives. For a complex signal, only 2𝑚 − 1 discrete values and their first-
order derivatives are needed. The decomposition results are exact in theory.
Numerical experiments show that the proposed methods have very high reso-
lution, and the sampling rate does not necessarily need to obey the Nyquist
sampling theorem. For noisy signals, the proposed methods exhibit extraordi-
nary accuracy.

2. Decomposition Theorem of Multifrequency Discrete
Real Signal
Multifrequency sinusoidal signals are among the most common signals in engi-
neering. A multifrequency real signal can be expressed as follows:

𝑥(𝑡) =
𝑚

∑
𝑖=1

𝑎𝑖 sin(2𝜋𝑓𝑖𝑡 + 𝜑𝑖0)
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where 𝑎𝑖, 𝑓𝑖, and 𝜑𝑖0 are the amplitude, frequency, and phase of the 𝑖th compo-
nent of signal 𝑥(𝑡), and 𝑚 is the number of component signals.

Discretizing 𝑥(𝑡), we construct the following generalized eigenvalue equation for
the multifrequency discrete real sinusoidal signal:

−D𝑥v = 𝜆Xv (2)

where 𝜆 is the generalized eigenvalue, v is the generalized eigenvector, X is
the square Hankel matrix of 𝑥(𝑡), and D𝑥 is the square Hankel matrix of the
second-order derivative ̈𝑥(𝑡). These matrices are defined as:

X =
⎡
⎢⎢
⎣

𝑥2 ⋯ 𝑥𝑛
𝑥3 ⋯ 𝑥𝑛+1
⋮ ⋱ ⋮

𝑥𝑛 𝑥𝑛+1 ⋯ 𝑥2𝑛−1

⎤
⎥⎥
⎦

; D𝑥 =
⎡
⎢⎢
⎣

̈𝑥2 ⋯ ̈𝑥𝑛
̈𝑥3 ⋯ ̈𝑥𝑛+1
⋮ ⋱ ⋮
̈𝑥𝑛 ̈𝑥𝑛+1 ⋯ ̈𝑥2𝑛−1

⎤
⎥⎥
⎦

(3)

where 𝑥𝑘, ̈𝑥𝑘 (𝑘 = 1, ⋯ , 2𝑛 − 1) are the discrete series of 𝑥(𝑡) and ̈𝑥(𝑡), respec-
tively.

Theorem 1: When 𝑛 ≥ 2𝑚, the generalized eigenvalue equation of the multi-
frequency real sinusoidal signal has 2𝑚 nonzero generalized eigenvalues, which
are given by:

𝜆2𝑖−1 = 𝜆2𝑖 = 4𝜋2𝑓2
𝑖 (4)

2.1 Proof

The square Hankel matrix X of signal 𝑥(𝑡) can be rewritten as:

X =
𝑚

∑
𝑖=1

𝑎𝑖X𝑖 (5)

where 𝑎𝑖X𝑖 is the square Hankel matrix of the 𝑖th sinusoidal component. The
element in the 𝑘th row and 𝑙th column of matrix X𝑖 is given by:

X𝑖(𝑘, 𝑙) = sin (2𝜋𝑓𝑖(𝑘 + 𝑙 − 2)/𝑓𝑠 + 𝜑𝑖0) , (𝑘, 𝑙 = 1, ⋯ , 𝑛) (6)

where 𝑓𝑠 is the sampling rate. The square Hankel matrix D𝑥 is given by:

D𝑥 =
𝑚

∑
𝑖=1

D𝑥𝑖
=

𝑚
∑
𝑖=1

−4𝜋2𝑓2
𝑖 𝑎𝑖X𝑖 (7)
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The ranks of matrices X and D𝑥 are less than or equal to 2𝑚, because the ranks
of the square Hankel matrices X𝑖 and D𝑥𝑖

are both two [?].

Suppose 𝜆 = 4𝜋2𝑓2
𝑖 , and considering the relation D𝑥𝑖

= −4𝜋2𝑓2
𝑖 𝑎𝑖X𝑖, equation

(2) is modified to obtain:

⎧{
⎨{⎩

𝑚
∑
𝑘=1
𝑘≠𝑖

D𝑥𝑘
+ 4𝜋2𝑓2

𝑖

𝑚
∑
𝑘=1
𝑘≠𝑖

𝑎𝑘X𝑘

⎫}
⎬}⎭

v = 0 (8)

Equation (8) has at least two nonzero solutions, which are v2𝑖 and v2𝑖−1, because
it is a homogeneous equation in vector v, and the rank of the coefficient matrix
is less than or equal to 2𝑚 − 2.
In equation (8), replacing v with v2𝑖 and left-multiplying by v𝑇

2𝑖 yields:

4𝜋2𝑓2
𝑖 = −

v𝑇
2𝑖 (∑𝑚

𝑘=1
𝑘≠𝑖

D𝑥𝑘
) v2𝑖

v𝑇
2𝑖 (∑𝑚

𝑘=1
𝑘≠𝑖

𝑎𝑘X𝑘) v2𝑖

(9)

where v𝑇
2𝑖 is the transpose of v2𝑖. Considering the following identity:

4𝜋2𝑓2
𝑖 = −

v𝑇
2𝑖D𝑥𝑖

v2𝑖
v𝑇

2𝑖𝑎𝑖X𝑖v2𝑖
(10)

the following equation is derived from (9) and (10):

4𝜋2𝑓2
𝑖 = −v𝑇

2𝑖D𝑥v2𝑖
v𝑇

2𝑖Xv2𝑖
(11)

Equation (11) reveals that 4𝜋2𝑓2
𝑖 is a Rayleigh quotient of matrices −D𝑥 and

X; that is, 𝜆 = 4𝜋2𝑓2
𝑖 is a generalized eigenvalue of equation (2), and v2𝑖 is the

corresponding generalized eigenvector [?]. Replacing v2𝑖 with v2𝑖−1, equation
(11) also holds. Therefore, 𝜆 = 4𝜋2𝑓2

𝑖 is a double eigenvalue of equation (2).

Thus, Decomposition Theorem 1 for discrete real signals is proven.

2.2 Component Amplitudes and Phases of Multifrequency Discrete
Real Signal

After computing the 𝑖th double eigenvalue and its two corresponding eigenvec-
tors, and considering equation (6), v𝑇

2𝑖𝑎𝑖X𝑖v2𝑖−1 can be expanded as:
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v𝑇
2𝑖𝑎𝑖X𝑖v2𝑖−1 = v𝑇

2𝑖H𝑖1v2𝑖𝑎𝑖 cos𝜑𝑖0+v𝑇
2𝑖−1H𝑖1v2𝑖−1𝑎𝑖 cos𝜑𝑖0+v𝑇

2𝑖H𝑖2v2𝑖𝑎𝑖 sin𝜑𝑖0+v𝑇
2𝑖−1H𝑖2v2𝑖−1𝑎𝑖 sin𝜑𝑖0

(12)

where H𝑖1 and H𝑖2 are square matrices of dimension 𝑛. Their elements in the
𝑘th row and 𝑙th column are given by:

H𝑖1(𝑘, 𝑙) = sin (2𝜋𝑓𝑖(𝑘 + 𝑙 − 2)/𝑓𝑠) , H𝑖2(𝑘, 𝑙) = cos (2𝜋𝑓𝑖(𝑘 + 𝑙 − 2)/𝑓𝑠) , (𝑘, 𝑙 = 1, ⋯ , 𝑛)
(13)

For the 𝑖th generalized eigenvector, v𝑇
2𝑖𝑎𝑖X𝑖v2𝑖−1 can be replaced by v𝑇

2𝑖Xv2𝑖−1
because the generalized eigenvectors are weighted orthogonal, that is,
v𝑇

𝑘 Xv𝑙 = 0 (𝑘 ≠ 𝑙). Thus, v𝑇
2𝑖Xv2𝑖 and v𝑇

2𝑖−1Xv2𝑖−1 can replace v𝑇
2𝑖𝑎𝑖X𝑖v2𝑖

and v𝑇
2𝑖−1𝑎𝑖X𝑖v2𝑖−1, respectively. Equation (12) is therefore modified to create:

[ v𝑇
2𝑖H𝑖1v2𝑖 v𝑇

2𝑖H𝑖2v2𝑖
v𝑇

2𝑖−1H𝑖1v2𝑖−1 v𝑇
2𝑖−1H𝑖2v2𝑖−1

] [𝑎𝑖 cos𝜑𝑖0
𝑎𝑖 sin𝜑𝑖0

] = [ v𝑇
2𝑖Xv2𝑖

v𝑇
2𝑖−1Xv2𝑖−1

] (14)

The amplitude 𝑎𝑖 and phase 𝜑𝑖0 can be calculated after solving for the unknowns
𝑎𝑖 cos𝜑𝑖0 and 𝑎𝑖 sin𝜑𝑖0 from equation (14). The frequencies, amplitudes, and
phases of all sinusoidal component signals can be computed in this manner.

3. Decomposition Theorem of Multifrequency Discrete
Complex Signal
The multifrequency complex signal can be expressed as:

𝑦(𝑡) =
𝑚

∑
𝑖=1

𝑎𝑖𝑒𝑗(2𝜋𝑓𝑖𝑡+𝜑𝑖0) (15)

where 𝑎𝑖, 𝑓𝑖, and 𝜑𝑖0 are the amplitude, frequency, and phase of the 𝑖th compo-
nent of the complex signal 𝑦(𝑡), and 𝑚 is the number of component signals.

Discretizing 𝑦(𝑡), we construct the generalized eigenvalue equation for the mul-
tifrequency discrete complex signal as:

−𝑗D𝑦v = 𝜆Yv (16)

where 𝜆 is the generalized eigenvalue, v is the generalized eigenvector, Y is
the square Hankel matrix of 𝑦(𝑡), and D𝑦 is the square Hankel matrix of the
first-order derivative ̇𝑦(𝑡). These matrices are defined as:
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Y =
⎡
⎢⎢
⎣

𝑦2 ⋯ 𝑦𝑛
𝑦3 ⋯ 𝑦𝑛+1
⋮ ⋱ ⋮

𝑦𝑛 𝑦𝑛+1 ⋯ 𝑦2𝑛−1

⎤
⎥⎥
⎦

; D𝑦 =
⎡
⎢⎢
⎣

̇𝑦2 ⋯ ̇𝑦𝑛
̇𝑦3 ⋯ ̇𝑦𝑛+1
⋮ ⋱ ⋮
̇𝑦𝑛 ̇𝑦𝑛+1 ⋯ ̇𝑦2𝑛−1

⎤
⎥⎥
⎦

(17)

where 𝑦𝑘, ̇𝑦𝑘 (𝑘 = 1, ⋯ , 2𝑛−1) are the discrete series of 𝑦(𝑡) and ̇𝑦(𝑡), respectively.
Theorem 2: When 𝑛 ≥ 𝑚, the generalized eigenvalue equation of the multifre-
quency complex signal has 𝑚 nonzero generalized eigenvalues, which are given
by:

𝜆𝑖 = 2𝜋𝑓𝑖, (𝑖 = 1, ⋯ , 𝑚) (18)

3.1 Proof

The square Hankel matrix Y of the complex signal 𝑦(𝑡) can be rewritten as:

Y =
𝑚

∑
𝑖=1

𝑎𝑖Y𝑖 (19)

where 𝑎𝑖Y𝑖 is the square Hankel matrix of the 𝑖th component complex signal.
The element in the 𝑘th row and 𝑙th column of matrix Y𝑖 is given by:

Y𝑖(𝑘, 𝑙) = 𝑒𝑗(2𝜋𝑓𝑖(𝑘+𝑙−2)/𝑓𝑠+𝜑𝑖0), (𝑘, 𝑙 = 1, ⋯ , 𝑛) (20)

where 𝑓𝑠 is the sampling rate. The square Hankel matrix D𝑦 is given by:

D𝑦 =
𝑚

∑
𝑖=1

D𝑦𝑖
=

𝑚
∑
𝑖=1

𝑗2𝜋𝑓𝑖𝑎𝑖Y𝑖 (21)

The ranks of matrices Y and D𝑦 are less than or equal to 𝑚, because the ranks
of the square Hankel matrices Y𝑖 and D𝑦𝑖

are both one [?].

Suppose 𝜆 = 2𝜋𝑓𝑖, and considering the relation D𝑦𝑖
= 𝑗2𝜋𝑓𝑖𝑎𝑖Y𝑖, equation (16)

is modified to obtain:

⎧{
⎨{⎩

𝑗
𝑚

∑
𝑘=1
𝑘≠𝑖

D𝑦𝑘
+ 2𝜋𝑓𝑖

𝑚
∑
𝑘=1
𝑘≠𝑖

𝑎𝑘Y𝑘

⎫}
⎬}⎭

v = 0 (22)

Equation (22) has at least one nonzero solution, which is v𝑖, because it is a
homogeneous equation in vector v, and the rank of the coefficient matrix is less
than or equal to 𝑚 − 1.
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In equation (22), replacing v with v𝑖 and left-multiplying by v𝑇
𝑖 yields:

2𝜋𝑓𝑖 = −
v𝑇

𝑖 (𝑗 ∑𝑚
𝑘=1
𝑘≠𝑖

D𝑦𝑘
) v𝑖

v𝑇
𝑖 (∑𝑚

𝑘=1
𝑘≠𝑖

𝑎𝑘Y𝑘) v𝑖

(23)

where v𝑇
𝑖 is the transpose of v𝑖. Considering the following identity:

2𝜋𝑓𝑖 = −
v𝑇

𝑖 D𝑦𝑖
v𝑖

v𝑇
𝑖 𝑎𝑖Y𝑖v𝑖

(24)

the following equation is derived from (23) and (24):

2𝜋𝑓𝑖 = v𝑇
𝑖 𝑗D𝑦v𝑖
v𝑇

𝑖 Yv𝑖
(25)

Equation (25) reveals that 2𝜋𝑓𝑖 is a Rayleigh quotient of matrices −𝑗D𝑦 and
Y; that is, 𝜆 = 2𝜋𝑓𝑖 is a generalized eigenvalue of equation (16), and v𝑖 is the
corresponding generalized eigenvector [?].

Therefore, 𝜆 = 2𝜋𝑓𝑖 is an eigenvalue of equation (16).

Thus, Decomposition Theorem 2 for discrete complex signals is proven.

3.2 Component Amplitudes and Phases of Multifrequency Discrete
Complex Signal

After computing the 𝑖th eigenvalue and its corresponding eigenvector, and con-
sidering equation (20), v𝑇

𝑖 𝑎𝑖Y𝑖v𝑖 can be expressed as:

v𝑇
𝑖 𝑎𝑖Y𝑖v𝑖 = 𝑎𝑖𝑒𝑗𝜑𝑖0v𝑇

𝑖 G𝑖v𝑖 (26)

where G𝑖 is a square matrix of dimension 𝑛. Its element in the 𝑘th row and 𝑙th
column is given by:

G𝑖(𝑘, 𝑙) = 𝑒𝑗(2𝜋𝑓𝑖(𝑘+𝑙−2)/𝑓𝑠), (𝑘, 𝑙 = 1, ⋯ , 𝑛) (27)

For the 𝑖th generalized eigenvector, v𝑇
𝑖 𝑎𝑖Y𝑖v𝑖 can be replaced by v𝑇

𝑖 Yv𝑖 because
the generalized eigenvectors are weighted orthogonal, that is, v𝑇

𝑖 Yv𝑘 = 0 (𝑘 ≠
𝑖). Thus, equation (26) becomes:

𝑎𝑖𝑒𝑗𝜑𝑖0 = v𝑇
𝑖 Yv𝑖

v𝑇
𝑖 G𝑖v𝑖

, (𝑖 = 1, ⋯ , 𝑚) (28)
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Equation (28) is a complex equation, so the amplitude 𝑎𝑖 and phase 𝜑𝑖0 (𝑖 =
1, ⋯ , 𝑚) can be calculated.

4.1 Decomposition of Noise-Free Multifrequency Real and
Complex Signals
Based on equations (1) and (15) as noise-free multifrequency real and complex
signals, respectively, the known frequencies, amplitudes, and phases of all com-
ponent signals for 𝑚 = 10 are listed in Table 1. Since the highest frequency
of the component signal is 290 Hz, we can set the sampling rate 𝑓𝑠 = 299 Hz,
which is slightly higher than the highest frequency.

Table 1. Parameters of the known signal

𝑓𝑗 (Hz) 𝜑𝑗0 (°)
⋯ ⋯

The minimum frequency difference between two neighboring components is only
0.5 Hz, the relative difference is about 0.5%, and the corresponding amplitude
difference is up to 20 times.

For the real signal with 𝑛 = 4𝑚 − 1 = 39, we solve the generalized eigenvalue
equation (2), computing ten double eigenvalues and twenty corresponding eigen-
vectors. Ten component frequencies were calculated using equation (4), and the
component amplitudes and phases were computed using equation (14).

Figure 1 shows the known multifrequency real signal and its ten decomposed
component signals. The 39 discrete points on the original multifrequency signal
are marked with the symbol ‘o’. Although the minimum frequency difference
between two neighboring components is only 0.5 Hz, the relative difference is
approximately 0.5%, and the corresponding amplitude difference is up to 20
times, the two neighboring component signals can be decomposed accurately.
The sampling rate is less than the Nyquist sampling rate, which would be 580
Hz—twice the highest component frequency.

Fig. 1. Multifrequency real signal and its ten decomposed component
signals. The 39 discrete points on the original multifrequency signal are marked
with symbol ‘o’. The maximum absolute errors in frequency, amplitude, and
phase are 1.99 × 10−9, 7.79 × 10−10, and −4.39 × 10−8, respectively.

For the complex signal with 𝑛 = 2𝑚 − 1 = 19, we solve the generalized eigen-
value equation (16), computing ten eigenvalues and ten corresponding eigenvec-
tors. Ten component frequencies were calculated using equation (18), and the
component amplitudes and phases were computed using equation (28).

The decomposition results are similar to those for the real signal. However,
with the multifrequency complex signal, the decomposed results contain both
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real and imaginary component signals, and the discrete points on the original
signal are much fewer than for the real signal.

The absolute computational errors in the component frequencies, amplitudes,
and phases are listed in Table 2. For the real signal, the maximum absolute
errors in frequency, amplitude, and phase are 1.99 × 10−9, 7.79 × 10−10, and
−4.39 × 10−8, respectively. For the complex signal, these errors are 6.41 ×
10−7, −2.51 × 10−7, and −6.72 × 10−6, respectively. It should be noted that
all maximum errors resulted from the two neighboring components with the
minimum frequency difference and maximum amplitude difference, while the
other errors were much smaller. Therefore, these errors are considered to be
caused by computer precision rather than the method itself.

Thus, the proposed decomposition theorems are exact in theory, and the corre-
sponding decomposition methods are highly accurate and possess high resolu-
tion, with no requirement for the sampling rate to obey the sampling theorem.
In fact, it is impossible to extract accurate frequencies, amplitudes, and phases
from multifrequency signals using other methods with so little discrete data.

Table 2. The absolute computation errors in the component frequen-
cies, amplitudes, and phases

Errors of real signal Errors of complex signal
Δ𝑓𝑗 (Hz) Δ𝜑𝑗0 (°)
−5.76 × 10−12 2.07 × 10−12

⋯ ⋯

The bold numbers represent the maximum absolute errors of the component
parameters. All maximum errors resulted from the two neighboring components
with minimum frequency difference and maximum amplitude difference, while
the other errors are substantially smaller.

Generally, the first-order and second-order derivatives of signals are unknown.
In such cases, they can be easily obtained through differential circuits or numer-
ically calculated using the discrete values of the original signal.

4.2 Simulation of FMCW Radar Measurement
Frequency-modulated continuous-wave (FMCW) radar is widely used to mea-
sure target distance. The transmitting antenna of the radar system transmits
an FMCW radio signal, the receiving antenna receives the reflected signal from
the target, and mixing the transmission and reflection signals yields [?]:

𝑧(𝑡) = 𝐴𝑒𝑗(2𝜋𝑓𝑏𝑡+𝜑𝑏) + 𝑤(𝑡) (29)

chinarxiv.org/items/chinaxiv-202202.00011 Machine Translation

https://chinarxiv.org/items/chinaxiv-202202.00011


where 𝐴 is the received signal power and 𝑤(𝑡) is the system noise. The frequency
𝑓𝑏 and phase 𝜑𝑏 are given by:

𝑓𝑏 = 4𝜋𝑓𝑐𝑅
𝑐𝑇𝑐

, 𝜑𝑏 = 4𝜋𝐵𝑅2

𝑐𝑇𝑐
(30)

where 𝑓𝑐 is the chirp start frequency, 𝐵 is the chirp bandwidth, 𝑇𝑐 is the chirp
duration, 𝑅 is the distance to the target, and 𝑐 is the speed of light.

According to equations (23) and (24), the distance to the target can be calcu-
lated by measuring the frequency 𝑓𝑏 or the phase 𝜑𝑏. In general, the distance
measurement accuracy of the phase method is higher. However, due to phase
periodic ambiguity, it is difficult to use the phase method when the measured
distance is long [?]. Here, we simulate distance measurement of the target using
the frequency method and investigate the influence of noise on measurement
accuracy using the proposed method.

The radar parameters are set as follows: chirp start frequency 𝑓𝑐 = 24 GHz,
chirp bandwidth 𝐵 = 100 MHz, chirp duration 𝑇𝑐 = 512 �s, and speed of light
𝑐 = 3 × 108 m/s. Suppose the target distance 𝑅 = 12.3456789 m, and the
noise 𝑤(𝑡) is zero-mean Gaussian white noise. With a specified signal-to-noise
ratio (SNR), 1000 simulation measurements were conducted, and the results are
shown in Figures 2 to 4.

Fig. 2. The absolute errors and relative errors of the average distance
from 1000 simulation measurements vs. SNR. As seen in Figure 2, even
when the SNR is very low (as low as -10 dB), the distance errors are less than 4
mm, and the relative error is approximately 0.032%. When SNR ≥ 10 dB, the
absolute and relative errors are close to zero. The reason for the high distance
accuracy is that the simulated measurements of frequency, amplitude, and phase
of signal 𝑧(𝑡) are highly accurate. Figure 3 shows the comparison between the
mean squared errors (MSEs) of the simulated frequency, amplitude, and phase
measurements and their Cramér-Rao bounds (CRBs) [?].

Fig. 3. The MSEs and CRBs of frequency, amplitude, and phase
of the signal vs. SNR. The MSEs of frequency, amplitude, and phase are
less than their CRBs, indicating that the method has achieved extraordinary
accuracy.

In general theory, it is impossible for the MSEs of frequency, amplitude, and
phase to be less than their CRBs. However, the simulation results show that
the MSEs are indeed less than the CRBs. This is very difficult to explain at
present, but it indicates that the method has achieved extraordinary accuracy.

To investigate the robustness of the method, the MSE of the simulated distance
measurements is calculated using:
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𝜎2
𝑠 = 1

𝑁
𝑁

∑
𝑖=1

(𝑅𝑖 − 𝑅)2 (31)

where 𝑁 = 1000 is the number of simulations, 𝑅𝑖 is the measured distance at a
certain SNR, and 𝑅 is the true target distance.

Figure 4 shows the curve of 𝜎2
𝑠 vs. SNR, demonstrating that 𝜎2

𝑠 decreases rapidly
with increasing SNR. Thus, the method has good robustness.

Fig. 4. The MSE of distance vs. SNR

5. Conclusions
The key contribution of this paper is the construction of generalized eigenvalue
equations for real and complex signals. For multifrequency real signals, the
generalized eigenvalue equation is constructed using the square Hankel matri-
ces of discrete values and their second-order derivatives. For multifrequency
complex signals, the generalized eigenvalue equation is constructed using the
square Hankel matrices of discrete values and their first-order derivatives. The
aforementioned Hankel matrix can be replaced by a Toeplitz matrix or other
matrices as long as the rank equals that of the corresponding square Hankel
matrix. The first-order and second-order derivatives of signals can be obtained
through differential circuits or numerically calculated using the discrete values
of the original signal.

The proposed decomposition theorems are exact in theory. For a noise-free real
signal with 𝑚 components, the method can exactly compute the frequency, am-
plitude, and phase of each component using only 2𝑚 − 1 discrete values and
their corresponding second-order derivatives. For a noise-free complex signal,
the number of discrete values decreases to 2𝑚 − 1, and the second-order deriva-
tives are replaced by first-order derivatives. The proposed methods have very
high resolution, and the sampling rate need not obey the sampling theorem.

For noisy signals, the proposed methods exhibit extraordinary accuracy. It is
possible for the MSEs of frequency, amplitude, and phase to be less than their
CRBs.

For multifrequency discrete real and complex signals, this may be the first time
that exact decomposition of frequencies, amplitudes, and phases of component
signals has been realized in theory.
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Note: Figure translations are in progress. See original paper for figures.
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