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Abstract

The introduction of non-Hermiticity extends concepts in traditional Hermitian
quantum systems and induces many novel physical phenomena, such as the non-
Hermitian skin effect unique to non-Hermitian systems, which has made the sim-
ulation of non-Hermitian quantum models a focus of attention. Compared with
quantum platforms, classical systems possess advantages such as low cost, ma-
ture technology, and room-temperature operation, among which classical circuit
systems are even more flexible. In principle, they can simulate quantum tight-
binding models of arbitrary dimension, arbitrary inter-site hopping, and arbi-
trary boundary conditions, and have become a powerful platform for simulating
quantum states of matter. In this work, using classical circuits, we successfully
simulate the steady-state properties of an important non-Hermitian quantum
model—the non-reciprocal Aubry-Andr'e model—via SPICE. This model features
both non-reciprocal site hopping and quasi-periodic on-site potentials. Using
this as an example, we elaborate in detail on how to establish the mapping
between the Laplacian form of classical circuits and the Hamiltonian matrix of
quantum tight-binding models under different boundary conditions, particularly
how to construct the non-reciprocity of the model using current-type negative
impedance converters. Then, based on the Green’ s function of the circuit, by
driving with AC current and measuring the voltage response, we use SPICE to
simulate the complex energy spectrum and corresponding spectral winding num-
ber under periodic boundary conditions, as well as the competition between skin
and localized modes under open boundary conditions. Furthermore, to prevent
the circuit response from diverging, we also analytically provide the design prin-
ciples for auxiliary components. The results show that the SPICE simulations
agree well with theoretical calculations, providing detailed guidance for further
experimental implementation. Due to the universality of the circuit design and
measurement scheme in this work, it can in principle be directly applied to the
circuit simulation of other non-Hermitian quantum models.
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Abstract

The introduction of non-Hermiticity extends the concepts of traditional Hermi-
tian quantum systems and induces many novel physical phenomena, such as
the non-Hermitian skin effect that is unique to non-Hermitian systems. This
has made the simulation of non-Hermitian quantum models a focus of atten-
tion. Compared to quantum platforms, classical systems offer advantages such
as low cost, mature technology, and room-temperature operation. Among these,
classical electrical circuits are particularly flexible, as they can in principle simu-
late quantum tight-binding models of arbitrary dimension, with arbitrary-range
hopping and arbitrary boundary conditions, making them a powerful platform
for quantum state simulation.

In this work, we successfully simulate the steady-state properties of an important
non-Hermitian quantum model—the nonreciprocal Aubry-André (AA) model—
using classical electrical circuits via SPICE. This model features both nonrecip-
rocal hopping between sites and quasiperiodic on-site potentials. As a concrete
example, we detail how to establish the mapping between the Laplacian formal-
ism of classical circuits and the Hamiltonian matrix of quantum tight-binding
models under different boundary conditions, with particular emphasis on con-
structing nonreciprocity using current-inversion negative impedance converters
(INICs). Based on the circuit’ s Green’ s function, we then simulate the complex
energy spectrum and corresponding spectral winding number under periodic
boundary conditions, as well as the competition between skin and localization
modes under open boundary conditions, by driving the circuit with AC cur-
rents and measuring voltage responses. To prevent divergent circuit responses,
we also derive analytical principles for setting auxiliary components.

The results demonstrate excellent agreement between SPICE simulations and
theoretical calculations, providing detailed guidance for future experimental im-
plementations. Due to the universality of our circuit design and measurement
scheme, it can in principle be directly applied to the circuit simulation of other
non-Hermitian quantum models.
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I. Introduction

In recent years, non-Hermitian physics [?] has attracted widespread attention
across various fields of physics. Beyond its traditional role in describing gain and
loss phenomena in classical systems, it has also been used to characterize the
properties of open quantum systems [?]. Unlike the Hermitian Hamiltonians
of closed systems, the introduction of non-Hermiticity extends the paradigm
of conventional quantum mechanics [?], leading to concepts such as complex
energy spectra and biorthogonal bases, which induce many novel phenomena:
parity-time (PT) symmetry breaking [?], non-Hermitian degeneracies [?, 7],
mode switching [?], and others. Non-Hermiticity has similarly expanded our un-
derstanding of topological states. A notable anomaly is that the bulk-boundary
correspondence, a fundamental principle in Hermitian topological systems, does
not always hold in non-Hermitian systems [?]. The non-Hermitian skin effect
[?, ?], which exists exclusively in non-Hermitian systems, is considered a key
reason for this breakdown. The discovery of the non-Hermitian skin effect
has triggered extensive research into its competition with traditional Hermi-
tian quantum effects, such as its interplay with Anderson localization [?] and
Hubbard interactions [?].

Given the importance of non-Hermitian physics, experimental simulation of
non-Hermitian models and their unique phenomena is particularly crucial. Com-
pared to traditional quantum platforms (such as cold atom systems [?, 7, ?]),
classical systems offer natural advantages for simulating non-Hermitian models.
In addition to features like low cost and mature technology, they can directly
implement non-Hermiticity through gain and loss, making them powerful plat-
forms for simulating non-Hermitian systems, as demonstrated in optical systems
[?, ?] and mechanical systems [?, ?]. Among these, classical electrical circuits,
with their unrestricted network configurations and high degree of tunability,
can in principle simulate quantum tight-binding models of arbitrary dimension,
with arbitrary-range hopping and arbitrary boundary conditions, making them
strong competitors for quantum system simulation. Numerous non-Hermitian
quantum models and phenomena have already been successfully implemented
in circuit systems, including PT symmetry breaking [?, ?], nonreciprocal Su-
Schrieffer-Heeger (SSH) models [?, ?], two-dimensional nonreciprocal Chern in-
sulators [?, ?], nonreciprocal higher-dimensional models [?, ?], nonreciprocal
Dirac models [?], and non-Hermitian exceptional lines [?].

Regarding the competition between the non-Hermitian skin effect and quasi-
disorder, Ref.~[?] proposed the nonreciprocal Aubry-André (AA) model:

H=r) (e*ln+1)(n|+e*n)(n+ 1+ v,[n)(n)+(e*e ™ [1)(N] + e e |N)(1])
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where ket® describes the nearest-neighbor hopping strength. If o # 0, the
forward and backward hopping strengths are unequal, indicating nonreciproc-
ity. The term v,, = 2 cos(27/n) represents the on-site quasiperiodic/disorder
potential, with A denoting the disorder strength and ( generally taken as an
irrational number. For finite-size systems, one can choose the number of sites
N = F, and 8 = F,_;/F, to ensure the quasiperiodic potential is incommensu-
rate with the lattice periodicity within the system size, where F; denotes the s-th
Fibonacci number. To clearly represent the boundary conditions in finite-size
systems, the hopping term between the first and last sites is explicitly written in
Eq.~(1) (within the second parentheses) and can represent a Hamiltonian with
magnetic flux ® inserted into the one-dimensional ring (after gauge fixing). For
convenience in subsequent circuit simulations, we write the Hamiltonian Hin
matrix form using the site basis {|n)}:

vy e 0 ete P
e* vy e @ 0
H=k& 0 e* vy 0
: : e
e el 0 0 e® Uy

The non-Hermitian topological properties of this model and the competition be-
tween skin and localization effects have been theoretically discussed in detail in
Ref.~[?]. We briefly review the main conclusions here: Under periodic boundary
conditions, when the quasi-disorder strength is weak (A < max{e®, e *} = \,),
the system’ s eigenstates are extended, and its eigenenergy spectrum forms a
loop winding around the origin in the complex plane, indicating a non-Hermitian
topological phase characterized by an energy winding number v = £+1. As
the quasi-disorder strength increases beyond A > A, the eigenstates undergo a
transition from extended to localized states, and simultaneously the eigenenergy
spectrum collapses into a line on the real axis, indicating a topologically trivial
phase with corresponding energy winding number v = 0. Interestingly, the topo-
logical phase transition coincides exactly with the localization transition point
because localization changes the distribution of the eigenenergy spectrum in the
complex plane, thereby affecting the energy winding number. Correspondingly,
under open boundary conditions, because the localization transition makes the
system insensitive to boundaries, the system exhibits the same phase transition
point. The difference is that in the topological phase region, the eigenstates
become skin modes localized at one edge (determined by the sign of «) and the
eigenenergy spectrum becomes real; in the localization phase region, the decay
lengths of eigenstates at both edges become different.

The main purpose of this paper is to provide a detailed introduction to simulat-
ing quantum tight-binding models using the circuit Laplacian formalism, using
the nonreciprocal AA quantum model as an example, to facilitate interested
readers in applying similar methods to simulate other quantum models and to
provide detailed guidance for experimental implementation. The remainder of
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the paper is organized as follows: Section II details how to construct the map-
ping between the Laplacian formalism of classical circuits and tight-binding
models. Section III presents the specific circuit design for implementing the
nonreciprocal AA model under different boundary conditions. Sections IV and
V use SPICE to simulate the energy spectrum and winding number under pe-
riodic boundary conditions and the competition between skin and localization
modes under open boundary conditions, respectively. The final section provides
a summary.

II. Correspondence Between Circuit Laplacian Formalism
and Tight-Binding Models

Any classical circuit network can be represented by a graph, with its nodes and
edges corresponding to circuit connection points and components [?, 7, ?]. For
circuits composed of passive elements such as resistors, inductors, and capacitors
(RLC), the constitutive equations for each element are V = RI, V = L4 7> and
I = C"Zl‘t/, where V' and I represent the voltage difference across and current
through the element, respectively, and (R, L, C') are the resistance, inductance,
and capacitance. Using Kirchhoff s current law and the above constitutive
equations, we obtain a differential equation for each node n in the graph:

2V
1a(0) = Coy P RAVAOA L V004 T |Com gz Va(0) = VO] 4 RabIV0) = V0] Lih V)~

m#n

where I, (t) and V, (t) represent the external input current and ground-
referenced voltage at circuit node n, respectively. We use (R,,,,,, Lyyms Crm) t0
denote the effective resistance, inductance, and capacitance from node n to
node m (subscript g represents ground), allowing description of more general
nonreciprocal elements. Conventional passive RLC elements are reciprocal, i.e.,
R,,=R,,=R,L,,,=L,,=L,C,,, =C,. =C. The above equation can
be written in a more compact matrix form:

V(1) | pdV(D)

1) =C— dt

+LV(t)

where I(t) and V() are column vectors of node input currents and ground-
referenced voltages, respectively, and (R, L, C) are coefficient matrices of ef-
fective resistances, inductances, and capacitances with matrix elements Con

Chg +Zm7£n Crms Ry = Ry +Em¢n R, Ly, =1Ly} -i-Zm7é - and for
n+m:C,, =—C,.,R,,=—RL L = —Lm%nl.

For the differential equation (5), we consider AC current sources I(t) and their
voltage responses V(t) at a fixed frequency w, with the form I(t) = Ie®! and
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V(t) = Vet Substituting these into Eq.~(5) yields a time-independent matrix
equation:

I= (iwC+R+ ,E)VEJ(UJ)V
iw

The defined J(w) is called the circuit Laplacian matrix or Kirchhoff matrix
[?], which has the dimension of admittance and generally has complex matrix
elements that depend on the driving frequency w. Without external current
input, i.e., J(w)V = 0, the condition detJ(w.) = 0 determines the circuit’ s
eigenfrequency spectrum {w,}. Alternatively, we can invert Eq.~(8) to obtain
V = J Hw)I = G(w)I, where G(w) = J1(w) is called the circuit Green’ s
function, which has the dimension of impedance.

In fact, for steady-state solutions of the form (7), any circuit network can be
expressed in Laplacian form, including active circuits with amplifiers [?, ?, ?]
and nonlinear circuits with nonlinear elements [?, ?].

To simulate quantum tight-binding models using classical circuits, we can di-
rectly relate the circuit Laplacian matrix J(w) to the real-space Hamiltonian
matrix H of the tight-binding model [?]. The eigenvalue equations of the Lapla-
cian

directly correspond to the stationary Schréodinger equation of the Hamiltonian
matrix. Here, j, (w) is the n-th eigenvalue of the Laplacian matrix, forming the
eigen-admittance spectrum that can completely simulate the energy spectrum
of H. In particular, from det J(w,.) = 0, we know that at eigenfrequencies w,,
at least one eigen-admittance vanishes, i.e., j, (w,) = 0.

Since J(w) is generally non-Hermitian, i.e., JT(w) # J(w), the corresponding
eigenvectors typically include both right and left eigenvectors 1™ (w). Through
AC analysis of circuits, we can obtain the right eigenmodes z/;£{'> (w) of J(w),
thereby simulating the right eigenstates of H; the left eigenstates can be simu-
lated using Jf(w). Through design and adjustment of components and driving
frequencies, J(w) is highly controllable and can in principle simulate a very
broad range of quantum models, including arbitrary dimensions, boundary con-
ditions, nonlinearities, and non-Hermitian properties.

Next, we apply the above circuit Laplacian formalism to construct the corre-
spondence between J(w) and the Hamiltonian matrix H of the nonreciprocal
AA model, thereby simulating its steady-state properties, including the energy
spectrum and winding number under periodic boundary conditions, as well as
the competition between skin and localization modes under open boundary con-
ditions.

chinarxiv.org/items/chinaxiv-202202.00008 Machine Translation


https://chinarxiv.org/items/chinaxiv-202202.00008

ChinaRxiv [$X]

III. Circuit Laplacian for the Nonreciprocal AA Model

Under AC driving, passive elements typically exhibit reciprocity, as determined
by the fundamental Kirchhoff current law. For example, the admittances of
capacitors and inductors, Jo(w) = iwC and J;(w) = 1/iwL, are independent
of the measurement direction. According to Eq.~(8), to achieve nonreciprocity
in the Laplacian matrix, i.e., J,,, (w) # J,,,,(w), we require circuit components
whose admittance values depend on the measurement direction. This typically
necessitates active elements, such as the negative impedance converter with
current inversion (INIC) [?].

As shown in Fig.~1(b), the INIC consists of an operational amplifier and several
linear elements. Using Kirchhoff’ s current law, we can easily derive the input
currents at its two ports:

WVi—v.), I="%w v
3 Z.

iwCp
A

Il:

This shows that the admittances in different directions are generally unequal:
Jj(w) = —";CI and J,(w) = “2& For convenience, we theoretically choose the

impedances in the INIC to satfsfy Z, = Z_, making the currents flowing into
the amplifier from both ends equal in magnitude but opposite in direction, i.e.,
I, = I, which yields admittances with opposite signs: J;(w) = —J,.(w).

Additionally, we will use components with negative values (such as negative
resistors), which can be realized in two ways as shown in Fig.~1(c) [?]. They
implement effective negative impedance (admittance) for grounded one-port and
floating two-port configurations through operational amplifiers. Using Kirchhoff’
s laws, the input impedance of the grounded one-port circuit [left panel of
Fig.~1(c)] is (V,—2V,)/Z = —Z. Similarly, the input impedances of the floating
two-port circuit [right panel of Fig.~1(c)] are Z;; = [V; — (2V, = V))]/Z = —Z
and Z;; = [V; = 2V, = V)|/Z = —Z,ie, Z; = Z;; = —Z.

Using these key elements, we design the circuit simulation schematic for the non-
reciprocal AA model shown in Fig.~1(a), based on the lumped-element circuit
model for a left-handed transmission line composed of inductors L, and capac-
itors Cyy [?]. The circuit consists of N effective voltage nodes V,, (n = 1,---, N)
corresponding to the N lattice sites of the model. According to Eq.~(8), we can
easily write the Laplacian matrix for this circuit:

701 CO - CI O CO + CI
Co+cl _C2 CO_CI O 1 1
J(w) = —iw 0 Co+C; —C4 0 +|iw(2Cy + C,.) + —— 4+ — | E = —iwA+
C() _ C] ZWLO RO
C,—C, 0 0 Co+C, —Cy

where C,, =C,, ; + C . ,, and
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1 s 1 n 1 n 1
L(L,b W2Lb,a 'L‘(JJR(%b iWRbJL

XR/L:COZECI—OJZ

The capacitors C,, ;, inductors L, ,, resistors R, ;, and R, are defined in Fig.~1,
and E is the identity matrix. Boundary conditions are controlled by the X-
related modules and switches in Fig.~1(a): when both end switches are con-
nected to port o and all X-related modules (X, ;, and X ,) are open-circuited,
the system corresponds to open boundary conditions; when both end switches
are connected to port p, we will see below that by adjusting the parameters
of the X-related modules we can simulate periodic boundary conditions with
magnetic flux.

Comparing this circuit Laplacian matrix (15) with the Hamiltonian matrix (2) of
the nonreciprocal AA model, we can establish a mapping between them (except
for the D term, which is proportional to the identity matrix E): A < H. Using
corresponding dimensionless parameters, we obtain the following relationships.

For the main body of the circuit (excluding boundaries), from

CotCp . Cor _ Dhcos(2apn)

Co—C;, 7 cosh a

we get

C
Cr — tanha, ni __2A cos(2mfn)
0 Cy cosh

Here we take C; as the reference capacitance. This allows us to understand
the role of each circuit component: (C,,C,., Ly) constitute the overall reference
potential of the tight-binding model (the D part). C, also provides the recipro-
cal coupling between sites, while the nonreciprocal coupling and varying on-site
potentials are implemented by the capacitor C; in the INIC and the grounded
capacitors C,,, respectively. As we will see later, the introduction of resistor
R, and capacitor C, is to prevent divergent circuit responses; they only cause a
global shift of the admittance spectrum in the complex plane. Note that C,, may
be required to be negative depending on node n; effective negative capacitance
can be realized using the scheme in Fig.~1(c).

For the boundary part, using the corresponding dimensionless parameter rela-
tionships

XR + XL 6046772(1) + efaei':b XR - XL 6a67i<1> o 670467,'@
20, er +e o 20, ex —e ¢

we obtain
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1 1—cos®d 1 1 coth 1 wsin ® 1 1 oth
= = — o, — = — =—0c «
w2l L,Cy = wiL, L " R L,Cy’ R, R

a a a a

Here we take L, and R, as reference inductance and resistance, respectively, and
define the reference frequency wy = 1/4/LyC, and the dimensionless quantity
v = Ry'\/Ly/Cy. When & is an integer multiple of 27, L, , and R, ,, all diverge,
representing open circuits and corresponding to periodic boundary conditions
without magnetic flux. As ® varies, R, ;, may become negative, which can also
be realized using the scheme in Fig.~1(c).

IV. Simulation of Energy Spectrum and Winding Number
Under Periodic Boundary Conditions

It is well known that even under periodic boundary conditions, disordered sys-
tems no longer have translational invariance, so the winding number cannot be
calculated by transforming the Hamiltonian to momentum space. The usual ap-
proach is to insert a magnetic flux ® at the center of the ring, making the system
a periodic function of ® (with period 27) for calculation. For non-Hermitian sys-
tems, since energies are generally complex, one can define the winding number
of complex energy in the complex plane to characterize the topological phase of
non-Hermitian systems [?, ?]:

1 27 o 1 27 9
— L [l maeH@) = = [ de L@
v 2m'/0 A 5 Indet H(®) 277/0 1@ 550

where 6(®) is the argument of det H(®). For the nonreciprocal AA model,
Ref.~[?] shows that different winding numbers represent different topological
phases: under periodic boundary conditions, ¥ = 0 indicates a topologically
trivial localized phase, while v = +1 indicates two topologically nontrivial ex-
tended phases.

To simulate and measure the winding number v of the nonreciprocal AA model
using circuits, we can replace H in definition (21) with A/C{ from the Laplacian
matrix (15) (dividing by C, ensures the argument of the logarithm is dimension-
less; overall scaling does not affect ). Therefore, as long as we can experimen-
tally measure the matrix A(®) for different values of ®, we can calculate the
corresponding winding number.

We perform SPICE simulations using the circuit’ s Green’ s function form (9).
For a circuit with periodic boundary conditions (both switches in Fig.~1 set
to port p), we connect an AC current source with frequency w only to node n,
measure the voltage responses at all N nodes, and divide by the input current
intensity to obtain the n-th column of the circuit’ s Green’ s function matrix
G(w). Repeating this operation for each node yields the entire Green’ s func-
tion matrix. The Laplacian matrix and corresponding matrix A can then be
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obtained from the relation J(w) = G~!(w) [?]. With the experimentally mea-
sured Laplacian matrix J(w), we can calculate its admittance spectrum and
corresponding left /right eigenvectors, as well as any physical quantities defined
therefrom, for comparison with theory.

It should be noted that the above analysis is based on the steady-state response
of the circuit system under AC current drive, i.e., Eq.~(7). In reality, when
the driving frequency approaches an eigenfrequency, besides producing a pro-
nounced resonant response, it can also excite other eigenmodes of the circuit
system. Such responses are typically called transient responses. The experi-
mental method for obtaining steady-state response generally involves delayed
measurement, waiting for the transient response to decay before using a lock-in
amplifier to capture the steady-state signal. Under periodic boundary condi-
tions, the eigenenergies of the nonreciprocal AA model become complex, and
correspondingly, the circuit’ s eigenfrequencies w, are generally also complex
[Fig.~2(b,c) left panels], meaning that transient responses at these frequencies
will diverge over time (Im[w,] < 0) or decay (Im[w,] > 0). For a system driven
at frequency w € R, divergence is detrimental to stable response, so we must
consider suppressing the transient response, which we achieve by selecting ap-
propriate R,.

We can calculate the imaginary parts of the eigenfrequencies using a flux-free
circuit (® = 0, where A is independent of w) to estimate the required R.
Writing Eq.~J(w,.)V = 0 in eigenvalue form yields the eigenfrequency condition:

w2’ w? 9
{(2+r)w%] —a, {(2+r)wg}'y =0

where r = C,./C, and a,, denotes the n-th eigenvalue of A/C, which is gen-
erally complex under periodic boundary conditions [?]. Therefore, by choosing
appropriate Ry and C, such that all eigenfrequency imaginary parts are non-
negative, i.e., min, (Imfw,,]) > 0, the system response will not diverge over
time. When the system is driven at a specific frequency w, the stable response
will be dominated by the w mode [?]. As derived in Appendix A, the conditions
for non-divergent circuit response are:

[T/, ]|

r > max(Re[a,]) —2 and v > max
n 2 +r —Rela,,)

Additionally, to excite as many eigenmodes as possible, the driving frequency
should be positioned within the eigen-spectrum. Since the energy spectrum of
the nonreciprocal AA model H is distributed near the origin of the complex
plane, the eigenvalues a,, of A(® = 0)/C, share this characteristic. Therefore,
setting v = 0 and a,, = 0 in Eq.~(23) yields a suitable driving frequency w =
wy/v/2 + 7. This choice also ensures that D = Ry1y/L,/Cy(2+7)E in Eq.~(15)
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takes a simple form. Unless otherwise specified, all calculations below use w =

wo/V2+r.

Using SPICE, we simulate a circuit with N = 21 nodes under peri-
odic boundary conditions [Fig.~1(a)]. The basic component values are
(Lo, Cy, Ry, C,) = (10puH,04pF,5Q,1.6 uF), giving w, = 0.5MHz and
(r,y) = (4,1). The driving frequency is chosen as w = wy/v6 ~ 0.2 MHz.
Other components (Cy,C,,, L, 4, R, ;) are determined from model parameters
using Eqs.~(18) and (20), with the quasiperiodic potential parameter 3 = 13/21.
Using this scheme, we perform SPICE simulations for three typical regions
in the theoretical phase diagram [Fig.~2(a)]. In the topological region with
v = 41, the simulated eigen-spectrum of A/C, forms a loop winding around
the origin in the complex plane [Fig.~2(b) right panel], while in the localized
region with winding number v = 0, it collapses into a line on the real axis
[Fig.~2(c) right panel]. Using the simulated A(®)/C, to calculate the phase
0(®) = argdet[A(P)/C,] as a function of ® [Fig.~2(d)], we obtain the simulated
winding numbers. The results show excellent agreement between simulation
and theory.

V. Simulation of Competition Between Skin and Localiza-
tion Modes Under Open Boundary Conditions

Reference~[?] proved that the nonreciprocal AA model has identical phase dia-
grams under open and periodic boundary conditions, except that states in the
topological phase region exhibit skin modes under open boundary conditions
while showing extended states under periodic boundary conditions. This section
uses the same circuit Laplacian method to simulate the competition between
skin and localization modes under open boundary conditions.

In terms of circuit design, open boundary conditions are realized by connecting
both end switches in Fig.~1(a) to port o and leaving all X-related modules open-
circuited. Similarly, we can reconstruct the circuit Laplacian matrix and cor-
responding A /Cj, under open boundary conditions through SPICE simulation,
then calculate the left/right eigenvectors to observe the competition between
skin and localization modes under different parameters. Here we adopt a sim-
pler method that achieves this without sequentially connecting the AC current
source to each node.

The circuit’ s Green’ s function (9) can be expressed in terms of the left/right
eigenvectors of the Laplacian as:

w

D () D@
V=G y P R 0,

Here, skin or localization modes are manifested by whether the distribution
of matrix elements of the left/right eigenvectors tends toward one edge or is
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localized at some intermediate position. By simply connecting an AC current
source to a single node and measuring the corresponding voltage response, we
can observe the competition. According to the above equation, this voltage
response is a linear superposition of all eigen-right vectors z/)gf ) (w) in the same
phase region with coefficients j;l(w)[wg)(w)}ﬂ, so it must exhibit either skin or
localization effects.

We use the same component parameters as for periodic boundary conditions,
except with v =0 (i.e., R, open-circuited). This is because under open bound-
ary conditions, all eigenfrequencies are real, as shown in Fig.~2(b,c), so there is
no divergence problem and no need for resistive suppression. Additionally, we
require D(w) = 0 in the Laplacian matrix; otherwise, when this term is large,
all eigenvalues j,(w) tend toward a constant j, and from Eq.~(25) we would
have V. — j~'I, which is proportional to the input current and cannot reflect
the competition. This is another reason for choosing v = 0.

We simulate a circuit system with N = 21 nodes under open boundary condi-
tions using SPICE. An AC current source with frequency w = w,/v/6 is con-
nected to node n; = 11, and the voltage amplitude at each node at frequency
w is measured. The results are shown in Figs.~3(a) and 3(b), clearly demon-
strating that in the topological phase region, the response voltage distribution is
near the right/left boundary, exhibiting right/left skin modes, while in the non-
topological phase region, the response voltage always remains near the driving
node, showing localized states.

To characterize the degree of localization of the corresponding voltage, we define
the inverse participation ratio (IPR):

2, [Vl

IPR= —"——
(2, 1Val?)

Figures~3(c) and 3(d) show that the points with minimum IPR are close to
the theoretical phase transition points. This is because both skin and localized
states have strong localization, corresponding to large IPR values, while near the
phase transition point the states are most extended, yielding small IPR values.
At the phase boundary between left and right skin modes (i.e., the boundary
between v = +1 and v = —1), corresponding to the reciprocal model, the skin ef-
fect disappears and the eigenstates become extended. At the boundary between
skin and localized phases (i.e., between v = +1 and v = 0), corresponding to the
balance between skin and localization competition, the states are also extended.

VI. Summary

In this paper, by constructing classical electrical circuits and mapping their
Laplacian matrices to the Hamiltonian matrix of the nonreciprocal AA model,
we successfully simulate important steady-state properties of this model using
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SPICE. These include the complex energy spectrum and spectral winding num-
ber that characterize the non-Hermitian topological properties under periodic
boundary conditions, as well as the competition between non-Hermitian skin
effects and quasi-disorder localization under open boundary conditions. We dis-
cuss in detail the principles and theoretical basis for setting circuit parameters,
providing specific guidance for future experimental implementations. Due to
the universality of our scheme, the design principles and theories discussed here
can be directly applied to the simulation and experimentation of other quantum
tight-binding models, such as the dual model of the nonreciprocal AA model
mentioned in Ref.~[?]. This would only require appropriate modifications to
the circuit scheme in Fig.~1, removing the INIC elements between nodes to
achieve reciprocal hopping and adjusting the corresponding grounded elements
to implement quasiperiodic complex on-site potentials.

The SPICE simulations in this paper were performed using LTspice software.
To better approximate theoretical results, we used ideal linear components
for capacitors, inductors, and resistors, and set the open-loop gain and input
impedance of the INIC amplifiers to 500 G and 500 G2, respectively, to simulate
ideal amplifiers. Due to the non-ideal nature of real components, simulation or
experimental results may have some deviations that require case-specific analy-
sis.

This paper focuses only on simulating the steady-state properties of quantum
tight-binding models. In fact, classical circuits can also be used to simulate dy-
namical properties, as discussed for the nonreciprocal AA model in Ref.~[?]. Ad-
ditionally, due to the rich characteristics of circuit components, nonlinear circuit
elements can be utilized to simulate nonlinear quantum systems [?]. Therefore,
classical circuits represent a powerful platform for simulating quantum systems
that is low-cost, technologically mature, and broadly applicable.

Appendix A: Conditions for Non-Divergent Circuit Re-
sponse

Based on the eigenfrequency expression (23), to ensure non-divergent circuit
response we require Imfwe ' /w,] > 0, which gives:

022Im\/(2—|—r)—an—72z—v—lm\/m—lm\/m

= —y <Im\/(2+4+7)+a, +Im\/(2+7) —a,

Here we treat the square root as a complex number. Since the left side of the
inequality is non-positive (y > 0), we only need to consider the condition when
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the right side (twice the real part of the square root) is non-positive. Therefore,
squaring both sides of inequality (A1) and simplifying yields:

VA QAT —a,+ 2+7) —ay, 222+ 7) +a,/(2+7) —q,

Squaring both sides again and simplifying gives:

[(2+7) — Re(a,)]y* > [Im(a,,)]*

Since the right side of the inequality is non-negative, we must require (2 +
r) — Re(a,,) > 0, which gives r > Re(a,,) — 2. Additionally, we obtain v >

[Im(a,,)|/\/2 4+ r — Re(a,,). Because all eigenfrequencies must satisfy these con-
ditions, we require:

[lmfa,,]|
2 +r — Rela,,)

r > max(Re[a,]) —2 and v > max

Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv —Machine translation. Verify with original.
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