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Abstract
Utilizing 24-hour precipitation forecasts at 36-hour lead time from the ECMWF
(European Center for Medium-Range Weather Forecast) and GRAPES-GFS
(China Meteorological Administration’s GRAPES Global Numerical Predic-
tion Operational System, Global/Regional Assimilation and Prediction System-
Global Forecast System) large-scale numerical models, along with dense precipi-
tation observation data from May to September of 2019–2020, and employing the
CRA spatial verification technique to identify and separate heavy rain targets
on the northeast side of the Qinghai–Tibet Plateau (18 cases for the ECMWF
model and 11 cases for the GRAPES-GFS model), this study quantitatively ana-
lyzes the characteristics of spatial errors (location, intensity, and pattern errors)
in heavy rain forecasts from the two models and summarizes the applicability
of large-scale numerical models for heavy rain forecasting on the northeast side
of the Qinghai–Tibet Plateau. The results indicate: (1) Pattern error accounts
for the largest proportion in both models’precipitation forecasts. For ECMWF,
intensity error accounts for the smallest proportion, followed by location error,
whereas for GRAPES-GFS, location error accounts for the smallest proportion,
followed by intensity error. (2) The forecasted heavy rain locations from both
models are biased westward and northward relative to observations. The heavy
rain center in ECMWF is biased westward and southward, while GRAPES-GFS
exhibits only a westward bias. (3) Both models significantly underestimate the
area of heavy rain regions, which can easily lead to missed heavy rain forecasts.
The GRAPES-GFS model underestimates both maximum precipitation and av-
erage rain intensity by over 40%, while ECMWF underestimates average rain
intensity by 11.49% and overestimates maximum precipitation by 1.47%. (4)
Both models demonstrate better heavy rain forecast performance for the south-
eastern Gansu region and southwestern Shaanxi region, but poorer performance
for northern regions such as northern Shaanxi and Ningxia.
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Abstract

Using precipitation forecasts from the ECMWF (European Center for Medium-
Range Weather Forecasts) and GRAPES (Global/Regional Assimilation and
Prediction System, the China Meteorological Administration’s global numerical
weather prediction operational system) large-scale numerical models, along with
high-density precipitation observation data, this study identifies and isolates
rainstorm targets over the northeastern side of the Tibetan Plateau based on
the Contiguous Rain Area (CRA) spatial verification technique. A quantitative
analysis is conducted on the spatial error characteristics—including location, in-
tensity, and pattern errors—of rainstorm forecasts from both models, summariz-
ing the applicability of large-scale numerical models for rainstorm forecasting in
this region. The results indicate that: (1) Pattern errors account for the largest
proportion of total errors in both models. ECMWF exhibits the smallest inten-
sity error proportion, followed by location errors, while GRAPES-GFS shows
the smallest location error proportion, followed by intensity errors. (2) The
forecasted rainstorm areas from both models are shifted westward and north-
ward compared to observations. The ECMWF model forecasts the rainstorm
center shifted west-southward, whereas GRAPES-GFS forecasts it only west-
ward. (3) Both models significantly underestimate the rainstorm area, which
can easily lead to missed rainstorm forecasts. GRAPES-GFS underestimates
both maximum precipitation and average rainfall intensity by more than 40%,
while ECMWF underestimates average rainfall intensity by 11.49% but overes-
timates maximum precipitation by 1.47%. (4) Both models demonstrate better
forecasting performance for rainstorms in the southeastern Longnan region of
Gansu and southwestern Shaanxi, but poorer performance in northern Shaanxi,
Ningxia, and other northern regions.

Keywords: Contiguous Rain Area; spatial error; rainstorm; northeastern side
of Tibetan Plateau

1. Introduction
Precipitation forecasting is one of the most important operational tasks in mod-
ern weather forecasting, with numerical weather prediction providing the most
valuable reference. However, due to inherent limitations in model design and ex-
ternal factors such as topography, precipitation forecast products from numeri-
cal models contain certain errors in their spatiotemporal distribution. Therefore,
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verifying and evaluating model performance provides essential background er-
ror information that helps forecasters correct model predictions. Conventional
point-to-point verification methods (such as TS scores) are sensitive to pre-
cipitation location and timing, suffer from “double penalty”issues, and can
mask valuable information for forecasters. While neighborhood spatial verifi-
cation methods can provide quantitative assessment of precipitation intensity,
coverage, and rainband location that forecasters care about, they may produce
different evaluation results due to factors like smoothing radius and filtering
thresholds, potentially leading to misleading assessments.

The Contiguous Rain Area (CRA) method, a spatial verification technique based
on object identification, decomposes total error into intensity, location, and pat-
tern components, providing clear meteorological verification significance. This
method first defines contiguous rain areas using a precipitation threshold within
a certain region, then calculates statistical quantities such as precipitation cen-
troid, area, and average intensity for both forecast and observation fields. The
total forecast error is defined as the mean of squared differences between orig-
inal forecast and observation, while the shifted error is the mean of squared
differences after shifting the forecast. To analyze error sources, the forecast rain
area is shifted to minimize root-mean-square error with observations, yielding a
shifted forecast rain area. Consequently, total model error can be decomposed
into intensity error (squared difference between shifted model mean intensity
and observed mean intensity), location error (total error minus shifted error),
and pattern error (shifted error minus intensity error). The CRA method has
been widely applied to model precipitation forecast and radar nowcasting veri-
fication both domestically and internationally.

The northeastern side of the Tibetan Plateau lies at the northern edge of the
East Asian summer monsoon transition zone. Influenced jointly by the East
Asian summer monsoon system, westerly weather systems, and plateau weather
systems, this region is sensitive to climate change with extremely unbalanced
annual precipitation distribution. Variations in rainy season precipitation are
mainly caused by changes in heavy precipitation, with rainstorms occurring
from May to September accounting for a significant proportion of annual totals.
Rainstorm occurrence is closely related to the region’s complex topography and
local microclimates. In recent years, despite continuous improvement in large-
scale numerical model performance, model precipitation forecast capability still
diminishes with increasing precipitation magnitude, with heavy precipitation
forecasts showing significant topographic influences and large errors in both
precipitation intensity and location.

This paper employs the CRA spatial verification technique to evaluate spatial
biases in ECMWF and GRAPES-GFS rainstorm forecasts over the northeastern
Tibetan Plateau, focusing on analyzing location errors, intensity errors, pattern
errors, and model forecast tendencies for rainstorms. The aim is to provide
forecasters with detailed model evaluation results for targeted forecast correction
and to offer valuable bias information for model development.
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1.1 Data Sources and Processing

Based on current operational applications and data availability, this study uti-
lizes 24-hour accumulated precipitation forecasts from ECMWF and GRAPES-
GFS with 0.125°$×0.125°𝑎𝑛𝑑0.25°×0.25°𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦, 𝑓𝑜𝑟𝑡ℎ𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑀𝑎𝑦−
𝑆𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟2019 − 2020𝑜𝑣𝑒𝑟𝑡ℎ𝑒𝑛𝑜𝑟𝑡ℎ𝑒𝑎𝑠𝑡𝑒𝑟𝑛𝑇 𝑖𝑏𝑒𝑡𝑎𝑛𝑃 𝑙𝑎𝑡𝑒𝑎𝑢(32° − 40°𝑁, 100° −
111°𝐸).𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑑𝑎𝑡𝑎𝑓𝑟𝑜𝑚𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐𝑤𝑒𝑎𝑡ℎ𝑒𝑟𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠(𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠, 𝑏𝑎𝑠𝑖𝑐𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠, 𝑎𝑛𝑑𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠)𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑𝑏𝑦𝐿𝑎𝑛𝑧ℎ𝑜𝑢𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑀𝑒𝑡𝑒𝑜𝑟𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑜𝑟𝑦𝑎𝑟𝑒𝑢𝑠𝑒𝑑𝑓𝑜𝑟𝑡ℎ𝑒𝑠𝑎𝑚𝑒𝑝𝑒𝑟𝑖𝑜𝑑.𝐵𝑜𝑡ℎ𝑚𝑜𝑑𝑒𝑙𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑑𝑎𝑡𝑎𝑎𝑛𝑑𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠𝑎𝑟𝑒𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑𝑡𝑜0.125°×$0.125°
grid data using variational techniques, which have been shown to produce sat-
isfactory interpolation results meeting accuracy and smoothness requirements
for objective analysis.

1.2 Research Methods

The CRA method is an object-based quantitative precipitation verification ap-
proach that examines contiguous rain areas defined by specific isohyets rather
than entire precipitation fields, thereby helping forecasters better understand
model error sources. The method first applies a precipitation threshold to de-
fine contiguous rain areas within a region, then calculates statistical measures
including precipitation centroid, area, and average intensity for both forecast
and observation fields. Total model error is defined as the mean of squared
differences between original forecast and observation, while shifted error repre-
sents the mean of squared differences after shifting the forecast. To analyze
error sources, the forecast rain area is shifted to minimize root-mean-square
error with observations, producing a shifted forecast rain area. Total error can
thus be decomposed into intensity error, pattern error, and displacement error,
with specific calculation methods detailed in reference [7].

1.3 Rainstorm Processes and Effective CRA

Regional rainstorm processes over the northeastern Tibetan Plateau are rela-
tively infrequent. A regional rainstorm event is defined when the number of
automatic stations with 24-hour accumulated precipitation reaching rainstorm
level ($�$50 mm) exceeds a certain threshold. Based on this criterion, 18 rain-
storm processes were identified from May to September 2019-2020 (Table 1).
When identifying and separating contiguous rain areas for these processes, the
threshold is set at $�50𝑚𝑚𝑤𝑖𝑡ℎ𝑎𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑒𝑥𝑐𝑒𝑒𝑑𝑖𝑛𝑔0.5°×$0.5° to
define an effective CRA. This threshold ensures contiguous rain areas are nei-
ther too large nor too small for meaningful analysis. Among the 18 processes,
ECMWF identified effective CRAs in 11 cases, while GRAPES-GFS identified
8 cases. Some processes lacked effective CRAs due to three main reasons: (1)
the model failed to forecast rainstorms, (2) forecasted rainstorm area was too
small and scattered, or (3) location bias was too large.
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2. Results
2.1 Characteristics of Rainstorms over the Northeastern Tibetan
Plateau

The 18 regional rainstorm processes occurred primarily in early and mid-August,
with the highest frequency in mid-August (Figure 2). Rainstorm area varied
dramatically from 1,709 km2 to 61,783 km2—a nearly 36-fold difference. All
observed rainstorm areas exceeding 11,000 km2 were successfully identified as
effective CRAs. When observed rainstorm area was smaller than 6,000 km2,
both models often failed to identify effective CRAs due to missed forecasts or
large location biases.

2.2 Overall Errors in Rainstorm Forecasts

The distribution of location, intensity, and pattern errors for both models is
shown in Figure 3 and Table 2. Pattern errors dominate in both models, ac-
counting for 52.36% of total error in ECMWF and 52.58% in GRAPES-GFS.
ECMWF shows the smallest intensity error proportion (20.73%), followed by
location errors (26.93%). Conversely, GRAPES-GFS exhibits the smallest lo-
cation error proportion (16.19%), followed by intensity errors (31.23%). Both
location and intensity error proportions range between 10%-50% across cases.
Pattern errors exceed 50% in most cases, suggesting that complex topography
significantly influences forecast accuracy.

2.3 Spatial Errors in Rainstorm Forecasts

Both models forecast rainstorm centroids significantly west of observations (Fig-
ure 5). ECMWF forecasts are shifted west-southwest on average (0.36° west,
0.11° south), while GRAPES-GFS forecasts are shifted westward with minimal
meridional bias (0.22° west). Displacement error analysis reveals that most
ECMWF cases are shifted west-northwest (average 0.34° west, 0.08° north),
while GRAPES-GFS cases are also shifted west-northwest but with smaller
westward displacement (less than half of ECMWF) and similar northward dis-
placement.

Two main factors cause displacement errors: (1) model forecasts of upper-level
systems are slower than observed, and (2) observed rainstorms typically occur
in southerly flow to the right of shear lines, while model forecasts concentrate
near shear lines or low vortices where dynamic forcing is strongest. For example,
in the August 3, 2019 case, the observed rainstorm was located in southerly flow
to the right of a 700 hPa shear line, while the model forecast positioned it near
the shear line itself, resulting in a west-northwest displacement error.

2.4 Rainstorm Area Errors

Both models consistently underestimate rainstorm area compared to observa-
tions (Figure 7). ECMWF forecasts are 68.33% smaller on average, while
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GRAPES-GFS forecasts are 16.20% smaller. The dispersion in GRAPES-GFS
area forecasts is much smaller than in ECMWF, indicating GRAPES-GFS is
more prone to missing rainstorm events. When observed rainstorm grid points
are fewer than 70 (area � 10,937.5 km2), both models tend to underestimate
area, often failing to identify effective CRAs. When grid points exceed 140
(area > 21,875 km2), ECMWF forecasts show comparable probabilities of over-
estimation and underestimation, demonstrating better performance for larger
rainstorm areas.

2.5 Intensity Errors in Rainstorm Forecasts

GRAPES-GFS average rainfall intensity is weaker than observed in all but a
few cases, with an average underestimation of 43.40% (Figure 8). ECMWF av-
erage intensity is also weaker than observed, but by a smaller margin (11.49%),
showing a more consistent and stable underestimation. When observed inten-
sity exceeds 60 mm, the underestimation becomes more pronounced in both
models. For maximum precipitation, GRAPES-GFS shows consistent underes-
timation averaging 49.33%, while ECMWF exhibits large dispersion but only
slight average underestimation (1.47%), with some cases showing significant
overestimation that compensates for underestimation in others.

Total precipitation (average intensity multiplied by grid points) is underesti-
mated in 79.72% of GRAPES-GFS cases, indicating the model’s internal atmo-
spheric water vapor cycle is systematically too dry. ECMWF total precipitation
shows comparable probabilities of overestimation and underestimation, suggest-
ing its overall water vapor cycle is more realistic.

2.6 Regional Forecast Performance

Analysis of forecast performance across different regions shows that effective
CRAs identified by both models are concentrated in eastern Gansu (Longnan)
and most of Shaanxi (Figure 9). The highest frequencies occur in southeast-
ern Gansu and southwestern Shaanxi, with moderate performance in central
Shaanxi, Dingxi, eastern Tianshui, and Pingliang-Qingyang regions. Both mod-
els perform poorly in northern Shaanxi, Ningxia, southern Baiyin, and northern
Dingxi. Overall, ECMWF and GRAPES-GFS demonstrate better forecasting
capability for rainstorms in southeastern Gansu and southwestern Shaanxi but
poorer performance in more northern regions.

2.7 Model Forecast Tendencies

To analyze model forecast tendencies, we define forecasts with area error $�$50%
as“accurate,”>50% as“overestimated,”and <-50% as“underestimated.”Sim-
ilar classifications apply to average intensity and maximum precipitation. Both
models tend to underestimate rainstorm area, average intensity, and maximum
precipitation (Table 3). GRAPES-GFS shows particularly strong underestima-
tion tendencies, with 75% of cases underestimating area and 87.5% underesti-
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mating average intensity, making it more prone to missed forecasts. ECMWF
shows more balanced tendencies, with comparable frequencies of accurate, over-
estimated, and underestimated forecasts for average intensity and maximum
precipitation.

3. Conclusions
Using 24-hour precipitation forecasts from ECMWF and GRAPES-GFS models
and high-density precipitation observations from May to September 2019-2020,
this study applies the CRA spatial verification technique to analyze spatial
errors (displacement, intensity, and pattern errors) and forecast tendencies for
rainstorms over the northeastern Tibetan Plateau. The main conclusions are:

(1) Pattern errors dominate total errors in both models, accounting for
52.36% in ECMWF and 52.58% in GRAPES-GFS. ECMWF shows
the smallest intensity error proportion (20.73%), followed by location
errors (26.93%), while GRAPES-GFS shows the smallest location error
proportion (16.19%), followed by intensity errors (31.23%). Displacement
errors are related to factors such as the speed of large-scale model forecast
systems, while pattern errors may be associated with the region’s complex
topography.

(2) Both models forecast rainstorm areas shifted west-northwest relative to
observations. ECMWF forecasts are shifted west-southwest on average
(0.36° west, 0.11° south), while GRAPES-GFS forecasts are shifted west-
ward (0.22°) with minimal meridional bias. Both models underestimate
rainstorm area, but GRAPES-GFS shows greater underestimation. For
rainstorm areas with fewer than 70 grid points, both models tend to un-
derestimate, while for areas exceeding 140 grid points, ECMWF shows
comparable overestimation and underestimation probabilities.

(3) ECMWF average rainfall intensity is underestimated by 11.49%, with
more pronounced underestimation when observed intensity exceeds 60 mm.
GRAPES-GFS average intensity is underestimated by 43.40%, showing
consistent and stable underestimation. GRAPES-GFS maximum precipi-
tation is underestimated by 49.33%, while ECMWF maximum precipita-
tion is slightly underestimated by 1.47% due to large dispersion.

(4) Both models perform better for rainstorms in southeastern Gansu and
southwestern Shaanxi, but poorer in northern Shaanxi and Ningxia. Fore-
cast tendency analysis indicates both models significantly underestimate
rainstorm area, easily leading to missed forecasts, though ECMWF demon-
strates stronger forecasting capability than GRAPES-GFS.
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