
AI translation · View original & related papers at
chinarxiv.org/items/chinaxiv-202201.00105

Floristic Composition, Distribution, and Resource Types of Annual Plants in the Deserts of Xinjiang (Postprint)

Authors: Jiaqian Du

Date: 2022-01-26T18:15:53+00:00

Abstract

Desert annual plants exhibit rapid growth rates and strong reproductive capacity, possessing significant forage, medicinal, and ecological value. Through literature review, verification of specimen collection records, and field surveys, this study clarifies the species richness, distribution patterns, and resource types of desert annual plants in Xinjiang. The results indicate that there are 236 species of desert annual plants in Xinjiang, distributed across 20 families and 109 genera, with Chenopodiaceae being the dominant family and Salsola the dominant genus. Families can be categorized into four distribution types, with cosmopolitan families predominating, accounting for 65% of the total number of families; genera can be categorized into nine distribution types and eight variants, with temperate-distributed genera predominating, accounting for 77.98% of the total number of genera. Among the primary desert types, sandy, gravelly, and saline deserts harbor 126, 96, and 51 annual plant species, respectively, representing 53.38%, 40.67%, and 21.61% of the total species count. Among these species, 51 and 55 species possess forage and medicinal value, respectively, with Chenopodiaceae and Asteraceae being predominant; 64 winter annual plants hold important ecological value, primarily concentrated in Brassicaceae, Poaceae, Asteraceae, and Boraginaceae.

Full Text

Preamble

Arid Zone Research (ChinaXiv Cooperative Journal)
Vol. 39 No. 1, January 2022

Floristic Composition, Distribution, and Resource Types of Desert Annual Plants in Xinjiang

DU Jiaqian, LIU Tong, WANG Hanyue, ZHAO Wenxuan, WANG Jie, XU Wenbin

(College of Life Sciences, Shihezi University, Shihezi 832003, Xinjiang, China)

Abstract: Desert annual plants exhibit rapid growth and strong reproductive capacity, holding significant value for forage, medicine, and ecological functions. Through literature review, herbarium specimen verification, and field investigations, this study identified the species richness, distribution patterns, and resource categories of desert annual plants in Xinjiang. The results indicate that Xinjiang hosts 236 species of desert annuals (excluding cultivated species) belonging to 109 genera across 20 families. Chenopodiaceae represents the dominant family, while *Salsola* is the dominant genus. Families can be classified into four areal types, with cosmopolitan families accounting for 65% of the total, reflecting their adaptation to Xinjiang's harsh arid environment. Genera are divided into nine areal types and eight subtypes, with temperate-distributed genera comprising 77.98% of the total. Among the main desert types, sandy, gravelly, and saline deserts support 126, 96, and 51 annual species respectively, representing 53.38%, 40.67%, and 21.61% of the total species pool. Within these, 51 species possess forage value and 55 have medicinal value, with Chenopodiaceae and Asteraceae being dominant in both categories. Additionally, 64 winter annual species with important ecological functions were identified, primarily concentrated in Brassicaceae, Poaceae, Asteraceae, and Boraginaceae.

Keywords: desert; annual plants; floristic geography; resource utilization; Xinjiang

1. Study Area and Methods

1.1 Study Area Overview

Xinjiang is situated in the hinterland of the Eurasian continent (73°40' -96°18' E, 34°25' -49°10' N), covering approximately 1.66×10^6 km². The region is characterized by an arid climate with scarce precipitation (approximately 150 mm annually), cold winters, and large diurnal temperature variations. The topography follows a "three mountain ranges embracing two basins" pattern: the Altai Mountains to the north, the Kunlun Mountains to the south, and the Tianshan Mountains dividing Xinjiang into southern and northern regions. Southern Xinjiang, at lower latitudes and influenced by the basin-mountain structure, belongs to the warm temperate zone with higher temperatures and minimal precipitation, hosting the mobile Taklamakan Desert and sparsely vegetated gravel and saline deserts. Northern Xinjiang, in the temperate zone with lower temperatures and more precipitation, contains the fixed and semi-fixed Gurbantunggut Desert. Complex geological conditions have created diverse desert types: sandy deserts primarily occupy the interiors of the Tarim and Junggar basins and lower river courses; gravel deserts (Gobi) are distributed across piedmont alluvial plains and upper-middle alluvial-proluvial plains; and saline

deserts (salt-affected lands) are concentrated in piedmont plain areas with high soil salinity.

1.2 Methods

Field Surveys: Stratified sampling was conducted in the Gurbantunggut Desert of the Junggar Basin during May-June 2018, coinciding with the flowering and fruiting period of most annuals. Plant diversity was surveyed across 30 sample plots. Autumn germination characteristics were investigated in September-October 2018 by counting germinated species and marking 30 seedlings per species for spring specimen collection and identification.

Data Compilation: Based on *Flora of Xinjiang*, *Simplified Flora of Xinjiang*, *Flora of China*, *Desert Flora of China*, *Flora of Main Forage Plants in Xinjiang*, *Flora of Xinjiang Medicinal Plants*, and *Flora Geography and Resource Utilization in Arid Desert Regions of Northwest China*, we compiled a checklist of Xinjiang desert annuals and identified species with medicinal and forage value. County-level distribution data were collected and verified by experts. Additional distribution records were supplemented from the Chinese Virtual Herbarium (CVH), National Specimen Resource Sharing Platform, Xinjiang Institute of Ecology and Geography Herbarium, and Shihezi University Herbarium.

Data Analysis: Using the Engler classification system for angiosperms, we statistically analyzed families, genera, and species. Geographic distribution patterns were determined following *Areal Types of Chinese Seed Plants*, *Statistical Analysis of Chinese Seed Plant Flora*, and *Areal Types of Chinese Seed Plant Genera*. A distribution database was established to analyze floristic composition, distribution, and resource types.

2. Results and Analysis

2.1 Floristic Composition of Desert Annual Plants

2.1.1 Species Richness: Xinjiang's desert annual flora comprises 236 species in 109 genera across 20 families, representing 41.67% of families, 33.96% of genera, and 33.14% of all annual plants in Xinjiang. The flora is concentrated in a few families: Chenopodiaceae, Brassicaceae, Asteraceae, Boraginaceae, and Poaceae account for 72.03% of total species, demonstrating clear familial dominance.

2.1.2 Dominant Families and Genera: Only Chenopodiaceae contains more than 20 species (33.05% of total species). Other relatively species-rich families include Brassicaceae (15.25%), Asteraceae (14.40%), Boraginaceae (8.90%), and Poaceae (8.05%). At the genus level, only *Salsola* exceeds 20 species (25 species, 10.59% of total). The top ten genera collectively represent 38.56% of all species, indicating strong generic concentration.

2.1.3 Areal Types of Families: Families are classified into four areal types: cosmopolitan (13 families, 65%), pantropical (1 family, 5%), and temperate (6 families, 30% including North Temperate and Old World Temperate distributions). The predominance of cosmopolitan families like Chenopodiaceae, Brassicaceae, Asteraceae, and Poaceae reflects their adaptation to Xinjiang's harsh environment.

2.1.4 Areal Types of Genera: Genera are divided into nine areal types and eight subtypes. Cosmopolitan genera (12 genera, 11.01%) include *Chenopodium*, *Suaeda*, *Salsola*, and *Atriplex*. Tropical genera (10 genera, 9.18%) include *Euphorbia*, *Cuscuta*, *Tribulus*, and *Aristida*. Temperate genera (85 genera, 77.98%) dominate, particularly Mediterranean, West Asian to Central Asian elements (28 genera, 25.69%) and Central Asian elements (22 genera, 20.18%). Notable Central Asian genera such as *Bassia*, *Agriophyllum*, *Koelpinia*, and *Halimocnemis* exhibit xerophytic and halophytic characteristics. Only two genera (1.83%) are Chinese endemics, with *Elachanthemum* being monotypic.

2.1.5 Distribution Across Desert Types: Sandy deserts support 126 species (53.38%), gravel deserts 96 species (40.67%), and saline deserts 51 species (21.61%). Some species occur across multiple desert types. For example, *Atriplex micrantha* and *A. tatarica* grow in both saline and gravel deserts, while *Kochia iranica* tolerates sandy, saline, and gravel deserts, demonstrating remarkable adaptability.

2.2 Resource Types

2.2.1 Forage Resources: Fifty-one species have forage value (28.44% of families, 21.61% of species), dominated by Chenopodiaceae (13 species), Poaceae (9 species), and Asteraceae (5 species). Quality forage includes *Schismus arabicus*, *Koelpinia linearis*, *Erodium oxyrrhynchum*, *Medicago minima*, and *Petrosimonia sibirica*. Good forage includes *Agriophyllum squarrosum* and *Eremopyrum orientale*, while moderate forage includes *Ceratocarpus arenarius*, *Atriplex hastata*, *Salsola collina*, and *Eremopyrum triticeum*.

2.2.2 Medicinal Resources: Fifty-five species have medicinal value (32.11% of families, 23.31% of species), with Asteraceae (11 species) and Chenopodiaceae (10 species) being dominant. *Artemisia hedinii* treats fever and inflammation, *Polygonum plebeium* acts as a diuretic and anti-inflammatory, and *Agriophyllum squarrosum* shows anti-diabetic and lipid-lowering effects. Many species possess detoxifying properties.

2.2.3 Winter Annual Plants: Sixty-four winter annual species (27.12% of total) play crucial roles in sand fixation and ecosystem stability under Xinjiang's warming climate. These are concentrated in Brassicaceae (27 species), Poaceae (9 species), Asteraceae (8 species), and Boraginaceae (6 species). Winter annuals contribute significantly to community biomass and stability in desert ecosystems.

3. Discussion and Conclusions

3.1 High Species Richness of Desert Annuals in Xinjiang

Our inventory of 236 desert annual species exceeds previous records of 178 species in *Desert Flora of China*, representing 52.91% of China's desert annual flora. This richness is comparable to other arid regions: 89 species in the Hexi Corridor, 73 in Alashan, and 142 across North America's four major deserts. The high diversity reflects Xinjiang's complex desert environments and transitional biogeographic position.

3.2 Temperate Elements Dominate the Flora

Cosmopolitan families dominate (65%), while tropical families are scarce (5%), likely relictual from the Tertiary thermal period. At the genus level, temperate distributions account for 77.98%, particularly Mediterranean-West Asian-Central Asian (25.69%) and Central Asian (20.18%) elements. The scarcity of Chinese endemic genera (1.83%) reflects their concentration in southwestern China, with only marginal representation in Xinjiang. This pattern underscores the region's floristic connection to the Central Asian desert flora.

3.3 Chenopodiaceae Predominates in Desert Annual Communities

Chenopodiaceae, the most drought- and salt-tolerant family, reaches its highest Chinese diversity in Xinjiang (38 genera, 80.2% of national total; 176 species, 44.4% of national total). With 78 annual species (33.05% of Xinjiang's desert annuals), Chenopodiaceae significantly outranks other families, highlighting its central role in desert plant community structure and ecosystem function.

3.4 Sandy and Gravelly Deserts Are Primary Habitats

Sandy deserts (42.68×10^4 km 2 , 32.49% of Xinjiang's desert area) and gravelly deserts (1.06×10^4 km 2 , 0.81%) together support 94.05% of desert annual species. Saline and other desert types host only 13.98% of species. This distribution reflects soil moisture as the limiting factor, with sand and gravel substrates providing favorable water retention for annual plant germination and growth. The prevalence of psammophytic and gravel-adapted species indicates strong habitat specialization.

3.5 Multiple Values of Desert Annual Plants

Desert annuals provide essential forage (51 species), medicinal (55 species), and ecological services. Forage species offer nutritional resources for livestock, while medicinal species contain bioactive compounds for treating various ailments. Ecologically, winter annuals like *Corispermum lehmannianum*, *Eremopyrum*

species, and *Arnebia decumbens* exhibit exceptional drought avoidance through dual germination strategies (spring and autumn). Species such as *Bassia dasyphylla* and *Agriophyllum squarrosum* serve as indicators of desertification severity. Their rapid life cycles and high reproductive output make them critical for sand stabilization, nutrient cycling, and maintaining biodiversity in fragile desert ecosystems.

References

- [1] Cao Boxun. *Geomorphology and Quaternary Geology*. Wuhan: China University of Geosciences Press, 1995: 21-22.
- [2] Yang Faxiang, Li Shengyu, Yue Jian, et al. Characteristics of desert types and their protection and utilization in Xinjiang. *Arid Land Geography*, 2019, 42(1): 14-21.
- [3] Zhang Liyun. Desert plants and feeding evaluation in China. *Chinese Journal of Grassland*, 1981, 3(1): 4-10.
- [4] Ludwig J A, Cunningham G L, Whitson P D. Distribution of annual plants in North American deserts. *Journal of Arid Environments*, 1988, 15(3): 221-227.
- [5] Metcalfe H, Milne A E, Deledalle F, et al. Using functional traits to model annual plant community dynamics. *Ecology*, 2020, 101(11): e03167.
- [6] Liu Jia, Yan Ping, Li X H, Li X L, Jiang D, et al. Annual plants in arid and semi-desert regions. *Frontiers in Biology*, 2008, 3(3): 259-264.
- [7] Li X H. *Biology of Annual Plants in Arid and Semi-arid Desert Regions of China*. Springer, Berlin: Heidelberg, 2010: 73-89.
- [8] Editorial Committee of Xinjiang Flora. *Flora of Xinjiang: Vol. 1-6*. Urumqi: Xinjiang Science & Technology & Hygiene Publishing House, 1992-2011.
- [9] Editorial Committee of Xinjiang Flora. *Simplified Flora of Xinjiang*. Urumqi: Xinjiang Science & Technology Press, 2014.
- [10] Ma Yali, Wang Lu, Liu Yanxia, et al. Updates on stress tolerance of main accessory structures and their synergistic interaction in desert plants. *Plant Physiology Journal*, 2015, 51(11): 1821-1836.
- [11] Qiu Aijun, Yang Zhaoping, Huang Wenjuan, et al. New distribution of seed plants in Xinjiang. *Seeds*, 2013, 32(1): 61-62.
- [12] Chen Y, Cao Q, Li D, et al. Effects of temperature and light on seed germination of ephemeral plants in the Gurbantunggut Desert, China: Implications for vegetation restoration. *Journal of Arid Land*, 2019, 11(6): 124-135.

[13] Pake C E, Venable D L. Seed banks in desert annuals: Implications for persistence and coexistence in variable environments. *Ecology*, 1996, 77(5): 1427-1435.

[14] Zeng Xiaoling, Liu Tong, Shen Xueying, et al. Environmental dependence of seed germination in Gurbantunggut Desert. *Journal of Ecology*, 2011, 30(8): 1604-1611.

[15] Wang Y L, Li X R, Liu L C, et al. Dormancy and germination strategies of a desert winter annual *Echinops gmelini* Turcz. in a temperate desert of China. *Ecological Research*, 2019, 34(1): 74-84.

[16] Zhou Y M, Lu J J, Tan D Y, et al. Seed germination ecology of the cold desert annual *Isatis violascens* (Brassicaceae): Two levels of physiological dormancy and role of the pericarp. *Plos One*, 2015, 10(10): e0140983.

[17] Wu Zhengyi, Raven P H, Hong Deyuan. *Flora of China: Vol. 1-6*. Beijing: Science Press, 1994-2012.

[18] Liu Yingxin. *Desert Flora of China: Vol. 1-3*. Beijing: Science Press, 1992.

[19] Cui Nairan. *Flora of Main Forage Plants in Xinjiang (Volume 1)*. Urumqi: Volksverlag Xinjiang, 1990.

[20] Cui Nairan. *Flora of Main Forage Plants in Xinjiang (Volume 2)*. Urumqi: Xinjiang Science & Technology & Hygiene Press, 1990.

[21] Xinjiang Institute of Biological Soil and Desert, Chinese Academy of Sciences. *Flora of Xinjiang Medicinal Plants*. Urumqi: Volksverlag Xinjiang, 1984.

[22] Pan Xiaoling, Dang Rongli, Lyu Guanghui, et al. *Flora Geography and Resource Utilization in Arid Desert Region of Northwest China*. Beijing: Science Press, 2003.

[23] Wu Zhengyi, Sun Hang, Zhou Zhekun, et al. *Floristic of Seed Plants from China*. Beijing: Science Press, 2011.

[24] Li Xiwen. Floristic statistics and analyses of seed plants from China. *Acta Botanica Yunnanica*, 1996, 18(4): 363-384.

[25] Wu Zhengyi. The areal types of Chinese genera of seed plants. *Acta Botanica Yunnanica*, 1991, 13(Suppl. 4): 1-139.

[26] Qiu Juan, Li Wenjun, Yang Zongzong, et al. *Cuminum borszczowii*, a newly recorded species of Apiaceae from China. *Journal of Tropical and Subtropical Botany*, 2020, 28(1): 101-104.

[27] Qiu J, Zhang J W, Gao T G, et al. *Crepis desertorum* (Asteraceae, Cichorieae), a new species from northern Xinjiang (China) based on morphological and molecular data. *Plant Diversity*, 2020, 42(2): 74-82.

[28] Liu Youjun, Ji Yongfu, Ma Quanlin, et al. Effect of light and temperature on the germination of three annual plants. *Chinese Journal of Eco-Agriculture*,

2010, 18(4): 810-814.

[29] Zeng Xiaoling. *Characteristics and Trend of Seeds Germinate in Autumn in Gurbantonggut Desert*. Shihezi: Shihezi University, 2011.

[30] Chen Zhichao, Shi Zhao Yong, Tian Changyan, et al. Diversity and spatial distribution characteristics of ephemeral plants germinated in autumn in the southern edge of Gurbantunggut Desert. *Anhui Agricultural Sciences*, 2008, 36(5): 2016-2018.

[31] Zhao Xuejie. *Reproductive Characteristics and Fruit Polymorphism in Two Ephemeral Species of Lappula*. Urumqi: Xinjiang Agricultural University, 2007.

[32] Yao Hong, Tan Dunyan, Qu Rongming. The fruit setting characteristics of 14 early spring ephemeral plants. *Proceedings of the 7th National Symposium on System and Evolutionary Botany*. Beijing: Botanical Society of China, 2002: 2.

[33] Yao Hong. *The Reproductive Ecology of Four Ephemeral Species of Trigonella*. Urumqi: Xinjiang Agricultural University, 2005.

[34] Lyu Ling. *The Reproductive Ecology on Four Species of Ephemeral Plants in Eremopyrum*. Urumqi: Xinjiang Agricultural University, 2005.

[35] Liang Cunzhu, Liu Zhongling, Zhu Zongyuan, et al. Species diversity and distribution characteristics of annual synusia in Alashan desert. *Chinese Journal of Applied Ecology*, 2003, 14(6): 897-903.

[36] Zhang Zhiwei, Yang Faxiang, Wu Jilong, et al. Composition and distribution characteristics of annual plant in desert area in Hexi Corridor. *Pratacultural Science*, 2009, 26(12): 37-41.

[37] Yao Yifeng, Wang Xia, Xie Gande, et al. Holocene vegetation succession and climate environment change in Xinjiang Region. *Chinese Science Bulletin*, 2015, 60(31): 2963-2976.

[38] Wang Ni, Cui Caixia, Liu Yan. Temporal-spatial characteristics and the influencing factors of rainstorm flood disasters in Xinjiang. *Arid Zone Research*, 2020, 37(2): 325-330.

[39] Yang Faxiang, Gui Dongwei, Yue Jian, et al. A discussion on classification system of desert in arid land. *Journal of Arid Land Resources and Environment*, 2015, 29(11): 145-151.

[40] Cui Dafang, Liao Wenbo, Zhang Hongda. Studies on the floristic geography of the woody flora from Xinjiang in China. *Forest Research*, 2001, 14(5): 553-559.

[41] Pan Xiaoling. Floristic analysis of seed plant genera in Xinjiang. *Bulletin of Botanical Research*, 1999, 19(3): 249-258.

[42] Dang Rongli, Pan Xiaoling. The Chinese endemic plant analysis in West North desert of China. *Bulletin of Botanical Research*, 2001, 21(4): 519-526.

[43] Huang Junhua. Floristic characteristics and resource utilization of Chenopodiaceae in Xinjiang. *Proceedings of the 70th Annual Meeting of the Botanical Society of China*. Beijing: Botanical Society of China, 2003: 2.

[44] Zhang Gao, Hai Ying, Zeng Yajuan. Floristic characteristics of wild seed plants in the middle Tianshan Mountains of Xinjiang. *Acta Botanica Boreali Occidentalia Sinica*, 2011, 31(12): 174-180.

[45] Cui Dafang, Liao Wenbo, Zhang Hongda. Analysis of the floristic geographical elements of families on the Xinjiang spermatophytic flora. *Arid Land Geography*, 2000, 23(4): 326-330.

[46] Tang Linghong. *Effects of Precipitation Change on Germination Plasticity and Life History of Annual Ephemerals*. Urumqi: Xinjiang Agricultural University, 2016.

[47] Wang X Q, Jiang J, Wang Y C, et al. Responses of ephemeral plant germination and growth to water and heat conditions in the southern part of Gurbantunggut Desert. *Chinese Science Bulletin*, 2006, 51(A01): 110-116.

[48] Long Y, Tan D Y, Baskin C C, et al. Seed dormancy and germination characteristics of *Astragalus arpilobus* (Fabaceae, subfamily Papilionoideae), a central Asian desert annual ephemeral. *South African Journal of Botany*, 2012, 83(6): 68-77.

[49] Nur M, Baskin C C, Lu J J, et al. A new type of non-deep physiological dormancy: Evidence from three annual Asteraceae species in the cold deserts of Central Asia. *Seed Science Research*, 2014, 24(4): 301-314.

[50] Lu J J, Tan D Y, Baskin J M, et al. Phenotypic plasticity and bet-hedging in a heterocarpic winter annual/spring ephemeral cold desert species of Brassicaceae. *Oikos*, 2012, 121(3): 357-366.

[51] Lu J J, Tan D Y, Baskin J M, et al. Trade-offs between seed dispersal and dormancy in an amphi-basicarpic cold desert annual. *Annals of Botany*, 2013, 112(9): 1815-1827.

[52] Lu J J, Tan D Y, Baskin J M, et al. Germination season and watering regime, but not seed morph, affect life history traits in a cold desert diaspore-heteromorphic annual. *Plos One*, 2014, 9(7): e102018.

[53] Lu J J, Tan D Y, Baskin C C, et al. Effects of germination season on life history traits and on transgenerational plasticity in seed dormancy in a cold desert annual. *Scientific Reports*, 2016, 6(1): 1-9.

[54] Wang A B, Tan D Y, Baskin C C, et al. Effect of seed position in spikelet on life history of *Eremopyrum distans* (Poaceae) from the cold desert of north-west China. *Annals of Botany*, 2010, 106(1): 95-105.

[55] Liu H F, Liu T, Han Z Q, et al. Germination heterochrony in annual plants of *Salsola*: An effective survival strategy in changing environments. *Scientific Reports*, 2018, 8(1): 1-13.

[56] Han Z Q, Liu T, Zeng X, et al. A two-year life history cycle model for autumn and spring seedling coexistence in an annual plant: An example of intraspecific niche differentiation. *Ecological Modelling*, 2016, 330(3): 16-23.

[57] Chen Y, Shi X, Zhang L, et al. Effects of increased precipitation on the life history of spring and autumn germinated plants of the cold desert annual *Erodium oxyrrhynchum* (Geraniaceae). *AoB Plants*, 2019, 11(2): plz004.

[58] Chen Y, Zhang L, Shi X, et al. Life history responses of spring and autumn germinated ephemeral plants to increased nitrogen and precipitation in the Gurbantunggut Desert. *Science of the Total Environment*, 2019, 659(12): 756-763.

[59] Chen Y, Zhang L, Shi X, et al. Life history responses of two ephemeral plant species to increased precipitation and nitrogen in the Gurbantunggut Desert. *PubMed Journal*, 2019, 7(1): e6158.

[60] Li Dexin, Zhang Daoyuan, Zhang Liuwei, et al. Biological seed characteristics of spring and autumn emergent *Erodium oxyrrhynchum* in the Gurbantunggut Desert. *Arid Zone Research*, 2020, 37(6): 1562-1568.

[61] Ren Yaoyao, Jiang Nanping, Liu Ruiying, et al. ITS2 sequence analysis and identification of medicinal *Artemisia* plants. *China Journal of Chinese Materia Medica*, 2017, 42(7): 1395-1400.

[62] Huang Yongqi, Deng Wei, Ye Shiyun, et al. The cholagogic, hepatoprotective and anti-inflammatory effects of *Polygonum plebeium*. *Northwest Pharmaceutical Journal*, 2005, 20(3): 115-117.

[63] Bao Mingming. *Study on the Activity of Agriophyllum squarrosum in Reducing Blood Lipid*. Hohhot: Inner Mongolia University, 2017.

[64] Xu Haiyan, Feng Xinhong, Zhang Jinyu, et al. Recent progress in research on *Agriophyllum squarrosum*. *Food Science*, 2020, 41(13): 346-354.

[65] Xi Jinbiao, Zhang Fusuo, Mao Daru, et al. The utilization of halophytes for traditional medicine in Xinjiang. *Journal of Agricultural Science and Technology*, 2003, 5(1): 43-48.

[66] Yin Linke, Cheng Zhengming, Pan Huixia. Resources of several wild medicinal plants in arid zone of Xinjiang and their introduction & cultivation. *Arid Zone Research*, 2002, 19(4): 30-34.

[67] Zhang Wenquan. *Study on Halophyte Flora and Their Utilization in Northwest China*. Yangling: Northwest A & F University, 2008.

[68] Chu Yu, Pan Xiaoling. Medicinal plants and their utilization in Xinjiang. *Chinese Wild Plant Resources*, 2001, 20(1): 21-23.

[69] Li Xueyu, Yan Ping, Wu Ling. Resources of psammophytes in Xinjiang. *Research and Practice on Chinese Medicines*, 2003, 17(1): 54-56.

[70] Tang Jinnian, Peng Jinfeng, Xu Xianying, et al. Ecological functions of annual desert plants and their roles in vegetation restoration and reconstruction in sandy land. *Gansu Science and Technology*, 2006, 22(10): 212-215.

[71] Mao Zumei, Zhang Dianmin. Outline of early spring ephemeral flora in Northern Xinjiang. *Arid Zone Research*, 1994, 11(3): 1-26.

[72] Shang Jianli, Liu Chunhong. Discussion on the selection of windbreak and sand fixation plant populations in the desert. *Anhui Agricultural Science Bulletin*, 2010, 16(17): 167-169.

[73] Cuello W S, Gremer J R, Trimmer P C, et al. Predicting evolutionarily stable strategies from functional responses of Sonoran Desert annuals to precipitation. *Proceedings of the Royal Society B*, 2019, 286(1894): 2018-2613.

[74] Bowers M A. Precipitation and the relative abundances of desert winter annuals: A 6-year study in the northern Mohave Desert. *Journal of Arid Environments*, 1987, 12(2): 141-150.

[75] Samson D A, Philippi T E, Davidson D L. Granivory and competition as determinants of annual plant diversity in the Chihuahuan Desert. *Oikos*, 1992, 65(1): 61-80.

[76] Osem Y, Kigel P J. Grazing effect on diversity of annual plant communities in a semi-arid rangeland: interactions with small-scale spatial and temporal variation in primary productivity. *Journal of Ecology*, 2002, 90(6): 936-946.

Appendices

Appendix Table 1

Family, Genus, Species and Distribution Characteristics of Desert Annual Plants in Xinjiang

[Table content preserved with scientific names and distribution locations; column headers translated to English]

Appendix Table 2

Distribution Characteristics of Genera and Species of Desert Annual Plants on Different Substrates in Xinjiang

[Table content preserved with substrate type columns (Sandy, Gravelly, Saline, Other) and species presence indicators]

Appendix Table 3

Forage Plant Resources of Desert Annual Plants in Xinjiang

[Table content preserved with species, families, forage parts, and quality ratings]

Appendix Table 4

Medicinal Plant Resources of Desert Annual Plants in Xinjiang

[Table content preserved with species, families, medicinal parts, and therapeutic effects]

Appendix Table 5

Autumn Sprouting Species of Desert Annual Plants in Xinjiang

[Table content preserved with species list and germination characteristics; asterisks denote newly discovered autumn-germinating species in the Junggar Desert]

Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv –Machine translation. Verify with original.