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Abstract

The land use patterns in mining areas of semi-arid regions are undergoing
tremendous changes under mining disturbances. Taking the Datong mining
area in Shanxi Province, one of the eight major coal production bases in China,
as the research object, this study analyzes the spatiotemporal changes of land
use types from 1985 to 2015 and the driving factors influencing land use changes,
and constructs an RF (Random Forest, RF)-FLUS (Future Land Use Simulation,
FLUS) model to simulate and predict future land use changes in mining areas
of semi-arid regions. The results show that: (1) From 1985 to 2015, the area
of forestland, cropland, and water bodies in the mining area decreased, while
the area of grassland and construction land increased. (2) The distribution of
forestland and grassland is significantly influenced by climate and distances to
water systems and facility points; the distribution of cropland is significantly
influenced by climate, elevation, and distances to water bodies and residential
points; the most important influencing factor for water body distribution is
precipitation; the distribution of construction land is mainly influenced by pro-
duction capacity and distance to facility points. (3) Both the FLUS model and
the RF-FLUS model exhibit high fitting accuracy, but the RF-FLUS model
demonstrates higher accuracy than the FLUS model and yields results closer to
actual land pattern changes. (4) According to the RF-FLUS model predictions
for land use changes in the mining area in 2025, forestland, grassland, and crop-
land within the mining area all show a declining trend, with little change in the
rate of decline; water bodies remain unchanged, while construction land and
other types (bare land and unused land) maintain a stable upward trend. This
study provides a favorable scientific basis for exploring the complex dynamic
evolution mechanisms of land patterns in mining areas, exploring optimization
paths for small-scale land resources, and promoting healthy regional ecological
development.
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Abstract

Land use and land cover change (LUCC) plays a critical role in regional land
planning and ecological environmental protection. In mining areas, LUCC
induced by human activities such as coal mining has intensified human-
environment conflicts. This study examines the spatio-temporal patterns of
LUCC and their driving factors in the Datong mining area of Shanxi Province
—a major coal production base in China—from 1985 to 2015. Furthermore, we
developed a Random Forest-Future Land Use Simulation (RF-FLUS) model
to predict future land use patterns in this semi-arid mining region. The
results reveal that: (1) From 1985 to 2015, forestland, cropland, and water
bodies decreased, while grassland and construction land increased. (2) Climate
conditions, elevation, and proximity to water systems and facilities significantly
influenced the distribution of forestland, grassland, and cropland; precipitation
was the primary factor affecting water body distribution; and coal production
capacity along with distance to facilities were the main determinants of
construction land distribution. (3) Both FLUS and RF-FLUS models demon-
strated high simulation accuracy, with the RF-FLUS model achieving superior
Kappa and Overall Accuracy (OA) indices. (4) Predictions for 2025 suggest
continued decline in forestland, grassland, and cropland, stable water areas,
and continued expansion of construction land and other land types. This study
provides scientific insights for understanding the complex dynamic mechanisms
of land use evolution in mining areas, optimizing land resource management at
local scales, and promoting sustainable regional ecological development.

Keywords: coal mining area; land use change; model prediction; random forest
model; driving factors

Introduction

Rapid urbanization has led to significant land cover and land use changes
(LUCC) [?], which can cause ecological environmental degradation and grad-
ually destabilize regional ecosystems [?]. Research on LUCC has evolved from
phenomenological description to mechanistic analysis, and from qualitative to
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quantitative simulation [?]. Land use change models can analyze the causes
of LUCC, explore landscape evolution patterns, and predict future land use
demands and distributions [?], making the study of LUCC dynamics and im-
provement of prediction capabilities a current research focus.

Land use change models primarily include: (1) Empirical statistical models such
as multiple regression and geographically weighted regression [?]; (2) Cellular
Automata (CA) models like SLEUTH [?]; (3) Machine learning models such as
neural networks and genetic algorithms [?]; and (4) Multi-agent system mod-
els [?]. Empirical statistical and machine learning models effectively integrate
remote sensing data to establish relationships between land changes and spatio-
temporal factors based on historical patterns. However, these models often
assume constant driving forces, making them unsuitable for long-term predic-
tions and prone to overfitting [?]. CA models, based on discrete spatial units,
better handle spatial information and are suitable for simulating complex geo-
graphic patterns [?], though early studies using logistic regression for transition
rules offered computational convenience but insufficient accuracy [?]. Yang et
al. [?] proposed using artificial intelligence and machine learning algorithms as
transition rules, improving accuracy but without weight output capabilities.

As researchers and decision-makers demand higher precision for land classifi-
cation, future pattern simulation, and suitability probability assessment, the
Random Forest model has gained widespread application in land use research
due to its error-balancing capabilities, moderate complexity, and ability to an-
alyze driving factor importance [?]. For instance, Zhang et al. [?] combined
Random Forest with CA models to simulate land use changes in Dongguan
while analyzing factor importance for different land types. Ma et al. [?] applied
Random Forest classification to land use mapping in complex terrain regions of
Qinghai Province. Chen et al. [?] leveraged Random Forest advantages with CA
models to study complex nonlinear urban spatial evolution through importance
discrimination of influencing factors.

Land use change is a geographic process influenced by both natural conditions
and socioeconomic factors. In mining areas, factors vary significantly due to
differences in location, topography, mining methods, scale, and socioeconomic
levels [?]. The Datong mining area lies in a semi-arid region where limited
natural carrying capacity, combined with the persistent temporal, spatial, and
intensive disturbance characteristics of coal resource extraction, not only occu-
pies and destroys substantial land but also exacerbates the fragile ecological en-
vironment. For example, Duan et al. [?] found that underground mining altered
plant community structure and vegetation coverage in arid desert regions. Shi et
al. [?] documented ecological problems such as groundwater decline and surface
subsidence caused by intensive coal mining. Zou et al. [?] demonstrated that
mining intensified soil erosion in the Weibei mining area of the Loess Plateau.

To reveal land use change patterns under natural conditions and human im-
pacts in mining areas, this study introduces Random Forest methods to im-
prove model accuracy and more accurately predict future land use patterns.
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This approach has theoretical significance for understanding the complex dy-
namic evolution mechanisms of land use patterns and practical importance for
exploring land resource management optimization and implementing ecological
regulation strategies in mining areas.

1.1 Study Area Overview

The Datong mining area is located in the southwestern part of Datong City,
Shanxi Province, between 39°43 -40°10 N and 112°31 -113°14 E. The terrain
consists of gentle hills with a monoclinal structure, with elevations ranging from
1031 to 1964 m. The Shili River and “U”-shaped valleys develop throughout the
region. Situated in a fragile semi-arid zone, the mining area experiences large
diurnal temperature variations, concentrated summer precipitation, dry climate
throughout the year, and annual evaporation far exceeding rainfall, resulting in
limited water area.

The main coal-bearing strata are the Jurassic and Carboniferous-Permian sys-
tems. Jurassic coal seams have been almost fully exploited except for the south-
western corner. Carboniferous-Permian mined-out areas are mainly distributed
in the eastern and southern parts. With low harmful element content, high tar
yield, and high calorific value, Datong coal is an important high-quality thermal
coal production base in China, primarily using underground mining methods.
The study area location is shown in Figure 1.

1.2 Data Sources and Processing

Data types include land use data and influencing factor data. Influencing fac-
tors comprise natural factors, socioeconomic factors, and distance factors (Table
1). Land use data were interpreted from Landsat time-series remote sensing im-
agery and reclassified into six categories according to national standards. DEM
data were obtained from the Chinese Academy of Sciences Resource and Envi-
ronmental Science Data Center (http://www.resdc.cn), from which slope and
aspect were extracted. Temperature and precipitation data were obtained from
the China Meteorological Data Network (http://data.cma.cn) and spatially in-
terpolated from station data. Coal production capacity was obtained through
field surveys. Population data were refined to 30m resolution based on reference
[?]. Distance factors were calculated using the Euclidean distance algorithm in
ArcGIS 10.5, with point-of-interest data obtained through web crawler technol-

ogy.
1.3 Research Methods

1.3.1 FLUS Model

The FLUS model couples a System Dynamics Model with a Cellular Automata
model, introducing an Artificial Neural Network (ANN) to construct transition
rules based on the original CA framework. This approach offers advantages
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in simulating competition and conversion among various land use types while
integrating human activities and natural effects [?].

The model consists of two components:

First, the ANN module trains sample data to construct spatial occurrence
probabilities for regional land use types. ANN advantages include iterative
learning and fitting of complex relationships between input data and training
targets [?]. In the input layer, neurons correspond to input variables; output
layer neurons represent occurrence probabilities of specific land types within
grid cells, where higher values indicate greater likelihood of target land type
occurrence [?]. The probability of land type k occurring in grid cell d at time 4
is calculated as:

1

d _
Dik = 14 o netd .
where net?) k= 2 Wj - Sigmoid(net,;) represents the activation connection be-
tween input and hidden layers; w; ; denotes adaptive weights between output
and hidden layers; and Sigmoid(net;) is the activation function.

Second, an adaptive inertia competition mechanism based on roulette wheel se-
lection integrates CA spatial operations to adjust discrepancies between macro-
level land demand and current land quantities to achieve target values, address-
ing limitations in handling complex interactions among land types [?]. The
comprehensive suitability probability is calculated as:

ng = pﬁk X Inertia?C X Qf),g

where Inertia?c represents the adaptive inertia coefficient for land type k at time
1, determined by the difference between demand and current quantity; and Q;{ &
denotes neighborhood effects. Transition costs derived from historical land use
data and empirical knowledge are represented as sc

m,k*

1.3.2 Random Forest Model

Random Forest is an ensemble intelligent algorithm generating multiple decision
trees with advantages in data mining, transition rule accuracy, and stability. It
overcomes ANN overfitting issues by training on bootstrap samples [?]. For each
of n decision trees with m variables, 2/3 of samples serve as in-bag data for model
training while 1/3 serves as out-of-bag (OOB) data for error estimation and
validation, with smaller OOB error indicating higher accuracy. This sampling
approach reduces correlation among decision trees, providing a foundation for
more accurate simulation and prediction of land use changes in the Datong
mining area.
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1.3.3 Mean Gini Decrease Method

The mean Gini decrease method was employed to calculate and analyze the im-
portance of different factors influencing land use patterns in the Datong mining
area. This method ranks decision trees by Gini Impurity, where feature im-
portance directly reflects participation significance in model calculations. Each
feature’ s importance is a floating-point number between 0 and 1, with larger
values indicating greater influence [?]. By traversing all tree nodes and sum-
ming Gini coefficient decreases for each selected feature variable, the method
quantifies each variable’ s impact on the final pattern.

1.3.4 Model Accuracy Validation

Model accuracy was validated using confusion matrices and Kappa coefficient
tests [?] for quantitative analysis. Higher diagonal percentages in confusion
matrices indicate greater accuracy.

2 Results
2.1 Spatio-temporal Characteristics of Land Use Patterns

From 1985 to 2015, the Datong mining area experienced dramatic land use
transformations (Figure 2). Forestland, cropland, and water bodies decreased,
while grassland and construction land increased. Specifically, during 1985-1995
when the mining area entered a mature stage with mechanized production and
expanded mining scale, cropland decreased by approximately 3.09% and was
mainly scattered at the mining area’ s edge. Concurrently, the implementa-
tion of the Grain-for-Green policy made grassland the dominant land use type,
accounting for 55.93% of total area. Water bodies decreased from 1.04% to
0.35%.

During 1995-2005, comprehensive production transformation and scaled mining
operations accelerated urban industrialization, characterized by substantial con-
struction land increase from 7.09% to 12.7%. Cropland, forestland, grassland,
and water areas all decreased due to human activities, while other land types
increased slightly by 0.29%.

From 2005-2015, the mining area entered a transition period with government
policy support. Land use changes showed various types converting to grassland,
with cropland-to-grassland transfer reaching 72.58% and forestland-to-grassland
conversion exceeding 40.75 km?. Water bodies predominantly transferred to
other types (94.35%), with minimal conversion to grassland. Other land use
types showed minimal changes.

2.2 Land Use Transfer Analysis Across Historical Periods

Land use transfer matrices (Table 2) reveal distinct patterns across periods.
During 1985-1995, mining activities and human livelihoods caused large-scale
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water body conversion to forestland, grassland, and cropland, with some con-
struction land transferring to forestland. From 1995-2005, large-scale mining
expansion, deforestation for mining, and road construction for coal transporta-
tion extensively occupied cropland and forestland, with primary transfers to
grassland. During 2005-2015, water bodies predominantly transferred to other
types (94.35%), with minor cropland and water area conversions to grassland.

Overall, the trend from 1985-2015 shows various land use types converting to
grassland, with forestland-to-grassland transfer being the most significant.

2.3 Analysis of Land Use Change Drivers

Analysis of variable importance reveals distinct driving factors for different land
use types (Figure 4). Forestland and grassland distributions were primarily in-
fluenced by climate conditions and distances to water systems and facilities.
Cropland distribution was affected by elevation, climate, and distances to water
bodies, facilities, and residential points—primarily because arid region agricul-
ture requires convenient irrigation, and farmers prefer locations near settlements.
Precipitation was the most critical factor for water body distribution. Construc-
tion land distribution was mainly determined by coal production capacity and
distance to facilities; higher production capacity increases various infrastruc-
ture including factories, roads, and worker accommodations, while proximity to
service facilities (restaurants, schools, hospitals, entertainment venues) directly
determines construction land distribution. Other land types were primarily
influenced by distance to water systems, as areas near water are easily trans-
formed.

2.4 Land Use Pattern Simulation and Future Prediction

The RF-FLUS model was applied to simulate land use changes in the Datong
mining area. Using 2005 as the baseline year, the model simulated 2015 land use
patterns, showing high consistency with actual distributions (Figure 5). Confu-
sion matrix validation (Table 3) yielded Kappa coefficients of 0.892 for RF-FLUS
and 0.851 for FLUS, with overall accuracy (OA) of 0.921 and 0.896 respectively,
demonstrating that the RF-FLUS model achieved higher accuracy and better
reflected actual land use patterns.

Based on the 2015 baseline, the RF-FLUS model predicted 2025 land use dis-
tribution (Figure 6). Results indicate that forestland, grassland, and cropland
will continue declining, with decreases of 14.97 km?, 130.75 km?, and 157 km?
respectively. Water areas will remain stable, while construction land and other
land types will increase steadily, with construction land expanding from 12.7%
to 15.71% (increase of 26.26 km?) and other types increasing by 44.12 km?.
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3 Conclusions

This study examined spatio-temporal land use pattern changes across different
stages in the Datong mining area, compared simulation accuracy advantages
of different land use models, analyzed primary driving factors, and conducted
predictive analysis, yielding the following conclusions:

(1) The Jurassic coal seams in the Datong mining area have been almost fully
exploited, with Carboniferous-Permian mining concentrated in the north-
ern and southern regions. Under mining influence, land use patterns under-
went dramatic transformation from 1985-2015, characterized by increases
in grassland, construction land, and other land types, while forestland
and cropland initially increased then decreased, with water bodies being
largely encroached upon. Land use change in mining areas represents a
dynamic spatio-temporal evolution process driven by resource extraction.

(2) Different land use types in the mining area have distinct driving factors.
Forestland and grassland are primarily influenced by climate and distances
to water systems and facilities; cropland distribution is affected by mul-
tiple factors including elevation, climate, and distances to water bodies,
facilities, and settlements; precipitation is the most important factor for
water bodies; construction land is driven by production capacity and dis-
tance to facilities; and other land types are mainly influenced by distance
to water systems. Mineral resource development constitutes the primary
driving force of land use change, while natural factors such as climate and
topography also exert significant influence.

(3) The RF-FLUS model, by integrating Random Forest algorithms, over-
comes overfitting issues in neural networks and leverages Random Forest’
s high accuracy advantages, providing more accurate predictions of future
land use patterns. This approach offers important reference value for sim-
ulating land use changes in small-scale mining areas and understanding
their complex dynamic evolution mechanisms.
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