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Abstract
Frequent droughts inflict serious damage upon the economy and agricultural
production of Gansu Province; therefore, establishing accurate and reliable
agricultural drought monitoring models through advanced methodologies is of
paramount importance for drought prevention and mitigation efforts in the
province. This study develops three distinct agricultural drought monitoring
models based on three machine learning approaches—Random Forest (RF), BP
neural network, and Support Vector Machine (SVM)—utilizing Vegetation Con-
dition Index (VCI), Temperature Condition Index (TCI), Vegetation Supply
Water Index (VSWI), and Precipitation Condition Index (PCI) derived from
multi-source remote sensing data for the period of April–October during 2002–
2019 in Gansu Province, in conjunction with DEM, soil available water capac-
ity (AWC), and climate type as independent variables, while employing the
3-month Standardized Precipitation Evapotranspiration Index (SPEI_3) from
meteorological stations as the dependent variable. The research analyzes and
compares these models to identify the optimal approach for monitoring agricul-
tural drought in Gansu Province, and further investigates the applicability of
machine learning-based models across different environmental conditions. The
results demonstrate that among the three constructed machine learning models,
the Random Forest model exhibits a high average R2 value (0.86) with mini-
mal errors (RMSE of 0.40 and MAE of 0.31), thereby achieving superior agri-
cultural drought monitoring performance compared to the BP neural network
and Support Vector Machine models. Furthermore, the three machine learning
models constructed separately for arid and humid environments all exhibit en-
hanced monitoring capabilities in humid environments (R2 > 0.82), while the
Random Forest model demonstrates stronger drought monitoring performance
than the other two models across both environmental contexts. These findings
provide novel scientific methodologies for agricultural drought monitoring and
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assessment in Gansu Province and hold significant implications for agricultural
drought research.

Full Text
Comparative Agricultural Drought Monitoring Based on
Three Machine Learning Methods
WANG Xiaoyan, LI Jing, XING Liting
College of Geography and Environmental Science, Northwest Normal University,
Lanzhou 730070, Gansu, China

Abstract

Frequent drought disasters have caused serious damage to the economy and agri-
cultural production of Gansu Province, making it crucial to establish accurate
and reliable agricultural drought monitoring models using advanced methods.
This study employs three machine learning methods—Random Forest (RF), BP
Neural Network (BP), and Support Vector Machine (SVM)—to construct agri-
cultural drought monitoring models for Gansu Province. Using monthly multi-
source remote sensing data, we derived the Vegetation Condition Index (VCI),
Temperature Condition Index (TCI), Vegetation Water Supply Index (VWSI),
Precipitation Condition Index (PCI), Available Water Capacity (AWC), and
climate type as independent variables, with the 3-month Standardized Precipi-
tation Evapotranspiration Index (SPEI_3) from meteorological stations as the
dependent variable. Three distinct agricultural drought monitoring models were
developed and compared to identify the optimal model for monitoring agricul-
tural drought in Gansu Province, while further investigating the applicability of
machine learning models under different environmental conditions. The results
demonstrate that among the three machine learning models, the Random For-
est model achieved the highest average coefficient of determination (R2 = 0.86)
with the smallest errors (RMSE = 0.40, MAE = 0.31), outperforming both
the BP Neural Network and Support Vector Machine models in agricultural
drought monitoring. The three machine learning models constructed separately
for dry and humid environments all showed superior monitoring capability in
humid environments (R2 > 0.82), with the Random Forest model demonstrat-
ing stronger drought monitoring performance than the other two models in both
environments. These findings provide a new scientific approach for agricultural
drought monitoring and assessment in Gansu Province and hold significant im-
portance for agricultural drought research.

Keywords: agricultural drought; machine learning; SPEI; MODIS

Introduction
Drought is one of the most frequent, persistent, and widespread meteorologi-
cal disasters. Agricultural drought arises from soil moisture deficits caused by
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below-normal precipitation or above-average evapotranspiration, leading to se-
vere economic losses. Accurate, real-time or near-real-time agricultural drought
monitoring is therefore essential. Drought indices are critical tools for monitor-
ing and analyzing agricultural drought, particularly for quantifying severity and
spatial extent. Based on data sources, these indices are typically classified into
two categories: those derived from meteorological station data and those from
remote sensing data.

Commonly used station-based drought indices include the Palmer Drought
Severity Index (PDSI), Crop Drought Identification Index (CDDI), Compos-
ite Index (CI), Standardized Precipitation Index (SPI), and Standardized
Precipitation Evapotranspiration Index (SPEI). The SPEI is widely applied
because it considers both precipitation and temperature, enabling monitoring
of different drought types across various regions. While station-based indices
effectively monitor drought severity around meteorological stations, remote
sensing data offer advantages of broad coverage, high spatial resolution, and
strong timeliness, making remote sensing-based drought indices more reliable
for large-area spatiotemporal monitoring.

Current remote sensing drought indices include the Normalized Difference Veg-
etation Index (NDVI), Vegetation Condition Index (VCI), Temperature Condi-
tion Index (TCI), Normalized Multi-band Drought Index (NMDI), Normalized
Difference Water Index (NDWI), and Vegetation Water Supply Index (VWSI).
Initially, single-factor remote sensing indices were used for drought monitoring,
but agricultural drought processes are complex and influenced by numerous fac-
tors. Single-factor indices often fail to capture the multi-type and multi-scale
characteristics of drought. Consequently, advanced methods for integrating
multi-source data to construct comprehensive drought monitoring models have
become a research frontier.

From a methodological perspective, integrated drought monitoring models have
been developed using weighted combination, multivariate joint distribution, and
machine learning approaches. Weighted combination methods require linear re-
lationship assumptions and weight allocation based on expert judgment or corre-
lation analysis, which may not capture the true non-linear relationships among
drought factors. Joint distribution methods preserve marginal distributions of
individual indices and describe complex dependencies, but become difficult to
implement with numerous variables. Machine learning methods have emerged
as a promising alternative, capable of handling complex non-linear relation-
ships while efficiently integrating multi-source data to establish comprehensive
drought monitoring models.

However, machine learning models exhibit regional variability in agricultural
drought monitoring performance. Given Gansu’s complex climate types and
frequent drought occurrence, this study employs Random Forest, BP Neural
Network, and Support Vector Machine methods to compare the applicability of
three integrated agricultural drought monitoring models in Gansu Province. We
further investigate model performance under different environmental conditions
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and analyze the relative importance of various drought-causing factors, provid-
ing new methods and scientific references for agricultural drought monitoring
research.

1.1 Study Area

Gansu Province is located in northwestern China between 32°11’–42°57’N and
92°13’–108°46’E. The region has a typical temperate continental climate charac-
terized by low precipitation and high evaporation. Agricultural drought occurs
almost annually in Gansu, with average affected areas reaching 82.68$×10^{4}$
hectares and causing significant grain yield losses. Meteorological data were
obtained from the China Meteorological Data Network (http://data.cma.cn/).
Based on data completeness and station distribution across cultivated land, 25
meteorological stations were selected for this study (Fig. 1). Station data
include monthly average temperature and precipitation from 2000–2019 for cal-
culating SPEI at various time scales.

1.2 Data Processing

We selected factors from meteorological, soil, and vegetation categories. PCI
served as the meteorological factor, AWC as the soil factor, and VCI, TCI,
and VWSI as vegetation factors. Considering spatial heterogeneity in moisture,
temperature, and vegetation coverage across different terrains, as well as high
variability in soil productivity and drought resistance, we included Digital Ele-
vation Model (DEM), AWC, and Chinese climate zoning as auxiliary factors.

The study period was 2000–2019 with monthly temporal resolution and 1 km
spatial resolution. Data sources include: - MODIS land surface temperature
(LST) from MOD11A2 product: 8-day temporal resolution, 1 km spatial resolu-
tion, aggregated to monthly averages - MODIS NDVI and EVI from MOD13A2
product: 16-day temporal resolution, 1 km spatial resolution - Precipitation
from TRMM3B43 product: monthly temporal resolution, 0.25° spatial resolu-
tion - DEM, climate zoning, soil sand/clay content, and land cover data: 1 km
resolution from the Chinese Academy of Sciences Resource and Environmental
Science Data Center (https://www.resdc.cn/)

All MODIS and TRMM data were obtained from https://ladsweb.modaps.eosdis.nasa.gov/.
Processing involved converting TRMM precipitation rates to monthly totals,
cropping to the study area, projecting to a consistent coordinate system, and
resampling to 1 km resolution using nearest-neighbor method. Remote sensing
drought indices were calculated as shown in Table 1. Soil AWC was estimated
using the empirical linear model of Gupta and Larson (1979) based on soil sand
and clay content percentages.

Table 1. Remote sensing drought index calculation formulas
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Index Formula Description
VCI (NDVI� -

NDVI���)/(NDVI��� -
NDVI���)

Vegetation Condition Index

TCI (LST��� -
LST�)/(LST��� -
LST���)

Temperature Condition Index

PCI (TRMM� -
TRMM���)/(TRMM���
- TRMM���)

Precipitation Condition Index

VWSI EVI/LST Vegetation Water Supply Index

Note: Subscript i denotes the i-th month; max and min represent maximum
and minimum values for month i across all years.

1.3 Machine Learning Methods

1.3.1 Random Forest Random Forest is an ensemble learning method that
constructs multiple decision trees during training. For regression tasks, the
final prediction is the average of all individual tree predictions. The algorithm
uses bootstrap sampling to create diverse training subsets and randomly selects
feature subsets at each node to build decorrelated trees, effectively reducing
prediction variance. Two key parameters require optimization: the number of
decision trees (n) and the number of preselected variables at each node (m).
While n must be sufficiently large to avoid underfitting, m is typically set to √P
or P/3, where P is the total number of candidate features.

1.3.2 BP Neural Network The BP Neural Network is a multilayer feedfor-
ward network trained by error backpropagation, consisting of an input layer,
hidden layers, and an output layer. The training process comprises forward
propagation and backward error propagation. During forward propagation, in-
put signals pass through hidden layers to output nodes via nonlinear transforma-
tions. If actual outputs deviate from expected values, errors are backpropagated
to adjust network weights and thresholds iteratively. The Levenberg-Marquardt
algorithm (trainlm) was selected for its fast training speed, though it requires
substantial memory.

1.3.3 Support Vector Machine Support Vector Machine is a supervised
learning method that maps low-dimensional, linearly inseparable data to a high-
dimensional feature space using nonlinear transformations, where it becomes
linearly separable. Based on structural risk minimization principles, SVM con-
structs optimal separating hyperplanes for classification or regression. The ra-
dial basis function (RBF) kernel was employed for its high accuracy and compu-
tational efficiency. Two critical parameters were optimized: kernel parameter
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g (affecting training/prediction speed) and penalty coefficient C (controlling
overfitting/underfitting trade-off).

Results
2.1 Drought Factor Analysis

To assess the monitoring capability of individual remote sensing drought indices
and the necessity of multi-source data integration, we extracted SPEI values at
meteorological stations and performed Pearson correlation analysis with remote
sensing indices at 1-, 3-, and 6-month time scales. As shown in Table 2, all
correlations except VCI during vegetation dormancy passed significance tests at
the 0.01 level.

Table 2. Correlation analysis between remote sensing indices and
SPEI at different time scales

Index SPEI_1 SPEI_3 SPEI_6
VCI 0.42** 0.51** 0.48**
TCI 0.38** 0.45** 0.43**
PCI 0.68** 0.72** 0.69**
VWSI 0.45** 0.52** 0.49**
AWC 0.44** 0.53** 0.50**

Note: ** indicates significance at the 0.01 level; * indicates significance at the
0.05 level. VCI = Vegetation Condition Index, TCI = Temperature Condition
Index, PCI = Precipitation Condition Index, VWSI = Vegetation Water Supply
Index.

The precipitation index (PCI) showed the highest correlation across all time
scales, peaking in July-August, indicating that precipitation-based drought in-
dices are most reliable during rainy seasons. The temperature index (TCI)
exhibited higher correlations during early vegetation growth periods (March-
April) than mid-to-late stages. Vegetation indices (VCI, VWSI) showed correla-
tions that increased initially then decreased, reaching maximum values during
peak vegetation growth (July-August), demonstrating stronger drought moni-
toring capability in well-vegetated areas. Soil moisture index (AWC) displayed
a similar pattern to vegetation indices, confirming its suitability for drought
monitoring in densely vegetated regions.

These analyses reveal limitations of single-factor remote sensing indices. While
PCI shows high correlation, precipitation alone cannot fully represent drought
conditions. Therefore, applying advanced machine learning methods to inte-
grate multiple drought-causing factors is essential for constructing comprehen-
sive agricultural drought monitoring models.
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2.2 Model Construction and Validation

From the 25 meteorological stations, we randomly selected 5 different groups of
5 stations each as validation datasets, with the remaining 20 stations serving as
training data for each group. Each training sample included monthly data from
2000–2019, comprising PCI, TCI, VWSI, AWC, and climate type as independent
variables and SPEI_3 as the dependent variable. This yielded 5 groups × 3
methods × 12 months = 180 agricultural drought monitoring models.

For Random Forest, parameter optimization involved selecting the number of
trees (n) and features per node (m). While n must exceed 1000 for model
stability, m should be less than the total feature count. Through systematic
testing, n = 1000 and m = 2 produced the minimum error. For SVM with
RBF kernel, optimal parameters were g = 0.01 and C = 100, balancing model
stability and generalization. The BP network used the trainlm training function
for fastest convergence.

Model validation involved correlating simulated SPEI_3 values with observed
data. Figure 2 shows scatter plots for one validation group, where all three
methods achieved R2 ≥ 0.78, confirming their applicability for drought moni-
toring. The Random Forest model demonstrated the strongest agreement with
observed values, while SVM outperformed BP.

2.3 Comparison of Three Machine Learning Methods

Statistical comparison using R2, RMSE, and MAE across all validation groups
(Table 3) revealed consistent performance rankings. Random Forest achieved
the highest average R2 (0.86) with lowest errors (RMSE = 0.40, MAE = 0.31),
indicating superior explanatory power for SPEI_3. BP Neural Network showed
R2 ranging 0.70–0.92, while SVM ranged 0.73–0.91. Random Forest’s simula-
tion values differed least from observed SPEI_3, demonstrating the best overall
performance, followed by SVM and then BP.

Table 3. Statistical comparison of three machine learning methods
on validation data

Method R2 RMSE MAE
Random Forest 0.86 0.40 0.31
BP Neural Network 0.81 0.48 0.38
Support Vector Machine 0.82 0.46 0.36

2.4 Spatial Sensitivity Analysis

Given Gansu’s complex climate patterns, we assessed whether the three mod-
els are influenced by different hydroclimatic regimes. Using K-means clustering
based on multi-year precipitation, stations were classified into dry and wet en-
vironments (Table 4). Separate training and validation datasets were created
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for each cluster, and model performance was evaluated using R2, RMSE, and
MAE (Table 5).

Table 4. Station classification results

Cluster Stations Annual precipitation (mm)
Dry (13
stations)

Jiuquan,
Zhangye,
Wuwei, Minqin,
Jingyuan,
Yongchang,
Jingtai, Gaolan,
Gaotai,
Dunhuang,
Guazhou,
Yumen,
Shandan

< 300

Wet (12
stations)

Kongtong,
Linxia,
Yuzhong,
Lintao,
Huanxian,
Xifeng,
Minxian, Wudu,
Maiji,
Huajialing,
Huining,
Tianshui

> 400

Table 5. Model performance evaluation in different environments

Environment
Random
Forest

BP Neural
Network

Support Vector
Machine

Dry R2 = 0.84,
RMSE = 0.42,
MAE = 0.33

R2 = 0.78, RMSE
= 0.51, MAE =
0.40

R2 = 0.76, RMSE =
0.53, MAE = 0.42

Wet R2 = 0.88,
RMSE = 0.38,
MAE = 0.29

R2 = 0.82, RMSE
= 0.46, MAE =
0.36

R2 = 0.85, RMSE =
0.43, MAE = 0.34

All models performed better in wet environments (R2 > 0.82) than in dry en-
vironments. Random Forest consistently outperformed the other methods in
both conditions. In dry environments, BP showed marginally better perfor-
mance than SVM, while in wet environments, SVM slightly outperformed BP.
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To evaluate temporal consistency, we analyzed continuous time series from 2012–
2019 for selected stations in both clusters (Fig. 3). Random Forest demon-
strated the best agreement with observed SPEI_3 across all sites. In dry en-
vironments (Shandan, Jingtai, Zhangye, Yongchang, Gaotai, Gaolan), BP per-
formed better than SVM, while in wet environments (Yuzhong, Lintao, Huanx-
ian, Linxia, Wudu, Minxian), SVM marginally outperformed BP. These results
confirm the reliability of environment-specific models.

Discussion
Agricultural drought is a natural disaster that significantly impacts human life
and production, necessitating precise and real-time monitoring solutions. This
study integrated meteorological and remote sensing data using Random Forest,
Support Vector Machine, and BP Neural Network to construct three comprehen-
sive agricultural drought monitoring models for Gansu Province. Our findings
align with previous research demonstrating that machine learning models effec-
tively improve drought monitoring accuracy.

Correlation analysis revealed that the integrated models achieved higher corre-
lations with SPEI_3 than any single-factor index, confirming that multi-source
data fusion enhances agricultural drought monitoring precision. Among the
three methods, Random Forest consistently outperformed SVM and BP, with
larger R2 values and smaller errors. This result is consistent with Dong et al. [22],
who found Random Forest more universally applicable for drought monitoring.

Random Forest enables variable importance ranking, revealing that meteorolog-
ical factors (PCI, TCI) consistently ranked as the two most important factors
across both environments, confirming precipitation and temperature as primary
drought drivers. In wet environments, vegetation factors ranked third in impor-
tance, while soil factors ranked third in dry environments. This reflects better
vegetation growth conditions in humid areas. All machine learning models per-
formed better in wet, high-vegetation regions, with Random Forest maintaining
superior performance across both environments.

Despite these advances, several limitations remain. The TRMM precipitation
data have a relatively coarse spatial resolution (0.25°) and monthly temporal
resolution, which could be improved. Additionally, the study did not incorporate
evapotranspiration or human activity factors in the model construction. Future
research should address these limitations to further enhance model performance.

Conclusions
Using Random Forest, Support Vector Machine, and BP Neural Network meth-
ods, this study integrated multi-source data to construct and validate three
agricultural drought monitoring models for Gansu Province. Key conclusions
are:

1. All three machine learning models demonstrated strong performance, with
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correlation coefficients between simulated and observed SPEI_3 exceeding
0.78, confirming their effectiveness for agricultural drought monitoring in
Gansu Province.

2. Comparative analysis using R2, RMSE, and MAE indicated that the Ran-
dom Forest model outperformed both SVM and BP models, providing
more comprehensive, reliable, and accurate agricultural drought monitor-
ing for Gansu Province.

3. Spatial sensitivity analysis revealed that Random Forest maintained supe-
rior performance in both dry and humid environments compared to the
other methods, demonstrating its robustness and reliability for agricul-
tural drought monitoring research.

4. Factor importance analysis showed that machine learning models perform
better in semi-arid regions with high vegetation coverage, with meteoro-
logical factors being the most critical drivers of agricultural drought.

These results provide a new scientific methodology for agricultural drought mon-
itoring and evaluation in Gansu Province, offering valuable insights for drought
research and management.
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Figure 1: Figure 1
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Figure 3: Figure 3

Figure 4: Figure 4
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