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Abstract

The standard errors (Standard Error, SE; or variance-covariance matrix) and
confidence intervals (Confidence Interval, CI) of cognitive diagnosis models have
important theoretical and practical value in measuring uncertainty in model pa-
rameter estimation, differential item functioning detection, model comparison
at the item level, Q-matrix validation, and exploring attribute hierarchical rela-
tionships. This study proposes two novel methods for calculating SE and CI: the
parallel parametric bootstrap method and the parallel nonparametric bootstrap
method. Simulation studies found that when the model is correctly specified,
these two methods demonstrate good performance in calculating SE and CI for
model parameters under conditions of high-quality and medium-quality items;
when model parameters are redundant, the SE and CI demonstrate good perfor-
mance for most permissible model parameters under conditions of high-quality
and medium-quality items. The value of the new methods and improvements
in computational efficiency are demonstrated through empirical data.
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Abstract

Standard errors (SE; or variance-covariance matrices) and confidence intervals
(CI) for cognitive diagnostic model parameters hold significant theoretical and
practical value across multiple domains, including quantifying estimation un-
certainty, detecting differential item functioning, conducting item-level model
comparisons, validating Q-matrices, and exploring attribute hierarchies. This
study proposes two novel methods for computing SEs and Cls: parallel para-
metric bootstrap and parallel non-parametric bootstrap. Simulation studies
reveal that when models are correctly specified, both methods perform well in
calculating SEs and ClIs for model parameters under high- and medium-quality
item conditions. When model parameters are redundant, both methods demon-
strate good performance for most permissible model parameters under high-
and medium-quality item conditions. The value of these new methods and
their computational efficiency improvements are demonstrated through empiri-
cal data analysis.

Keywords: cognitive diagnostic model, standard error, confidence interval,
bootstrap, parallel computing
Classification Code: B841

1 Introduction

Cognitive Diagnostic Models (CDMs), also known as Diagnostic Classification
Models, represent a class of discrete latent variable models (Rupp et al., 2010)
that have been widely applied in psychology, education, and biology (e.g., Tjoe
& de la Torre, 2014). Latent attributes carry different meanings across do-
mains, such as knowledge, skills, cognitive processes, mental disorders, or even
pathogens (Rupp et al., 2010; Wu et al., 2017). When appropriately applied,
CDMs enable researchers to infer each individual’ s multidimensional latent at-
tribute mastery status from observed response patterns, providing timely feed-
back, personalized guidance, or targeted remediation.

The standard error (SE) of CDM model parameters quantifies estimation uncer-
tainty (Liu et al., 2021). In psychometric models, two model parameters with
identical point estimates may exhibit different confidence intervals due to vary-
ing SEs, necessitating simultaneous consideration of point estimates and Cls.
For instance, if two items in a CDM both have guessing parameter estimates
of 0.2 but SE estimates of 0.08 and 0.05 respectively, their estimation precision
differs. Under normal distribution theory, the first guessing parameter’ s 95%
CI is [0.2-1.96$x0.08,0.2 + 1.96 x0.08], whilethesecond’ sis[0.2-1.96x0.05, 0.2 +
1.96x$0.05]. Consequently, numerous psychology journals (e.g., Acta Psycho-
logica Sinica, or see American Psychological Association, 2020) require or rec-
ommend reporting SEs and 95% CIs. However, few empirical CDM studies
report model parameter SEs and Cls, primarily due to the lack of accessible
computational methods.

This paper examines two commonly used SE and CI estimation approaches—
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analytic methods and bootstrap methods—identifies their current limitations,
and proposes a simple, feasible alternative. Model parameter SEs (or more
generally, variance-covariance matrices) play a fundamental and central role in
CDM inferential statistics (Liu, Xin et al., 2019; Philipp et al., 2018). Beyond CI
computation, model parameter SEs are crucial for differential item functioning
detection (Liu, Yin, et al., 2019; Ma et al., 2021; Liu et al., 2016), item-level
model comparisons (de la Torre & Lee, 2013; Liu, Andersson, et al., 2019; Ma
& de la Torre, 2016, 2019), Q-matrix validation (Ma & de la Torre, 2020a), and
exploring attribute hierarchies (Liu et al., 2021; Wang & Lu, 2021).

Researchers have proposed various analytic estimation methods (Liu, Xin et al.,
2019; Liu et al., 2021; Philipp et al., 2018; Liu et al., 2016), including the Em-
pirical Cross-product Information Matrix (XPD), Observed Information Matrix
(Obs), and Sandwich-type Information Matrix (Sw). Under model parameter
identifiability conditions (Gu & Xu, 2020; Wang & Lu, 2021), simulation and
empirical studies have investigated the performance of these analytic informa-
tion matrices (Liu et al., 2016; Liu et al., 2016) for computing SEs and Cls
of model parameters (including item parameters and structural parameters de-
scribing examinee distributions). Regarding item parameter SEs and Cls, re-
searchers have compared XPD, Obs, and Sw performance under ideal conditions
(perfect model-data fit) and under misspecification of CDM item response mod-
els and/or Q-matrices (Liu, Xin, et al., 2019; Philipp et al., 2018). Findings
indicate that when models (including item response models and Q-matrices) are
correctly specified or contain minimal misspecification, all three methods show
good consistency in estimating item parameter SEs. Under severe model mis-
specification (e.g., simultaneous substantial errors in item response models and
Q-matrices), only Sw remains robust (Liu, Xin, et al., 2019).

Regarding structural parameter SEs and Cls, studies have explored these within
the Hierarchical Cognitive Diagnosis Model (HCDM; Templin & Bradshaw,
2014) framework (Liu et al., 2021). When attribute hierarchies are correctly
specified (i.e., the structural model is perfectly specified), all three methods
achieve good 95% CI coverage rates with sample sizes of 3,000 or more. When
attributes have hierarchical relationships but a saturated CDM is used for es-
timation (i.e., structural model parameters are partially redundant), XPD and
Obs methods perform well for permissible structural parameters (those theoret-
ically non-zero according to attribute hierarchies), while XPD performs well for
impermissible structural parameters (those theoretically equal to zero) (Liu et
al., 2021).

Accurately identifying and validating attribute hierarchies in CDMs enables
deeper understanding of examinees’ psychological processes, holding important
theoretical and practical value (Leighton et al., 2004). However, correctly pre-
specifying attribute hierarchies in practice is extremely challenging (Hu & Tem-
plin, 2020; Liu et al., 2021; Ma & Xu, 2021; Templin & Bradshaw, 2014; Wang
& Lu, 2021). When cognitive diagnostic assessments contain attribute hierar-
chies, using a saturated CDM to fit response data yields structural parameters
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approximately equal to zero, providing evidence for attribute hierarchies (Liu et
al., 2021; Templin & Bradshaw, 2014). Liu et al. (2021) preliminarily proposed
using z-statistics to explore attribute hierarchies when structural parameter SEs
are known, expressed as:

where 7) represents the structural parameter estimate and SFE(7)) denotes its
standard error.

While XPD, Obs, or Sw methods can effectively compute CDM parameter SEs
in most cases, these analytic approaches have two major drawbacks. First, they
require positive definiteness of the information matrix. DeCarlo (2011, 2019)
found that boundary value problems in CDMs can cause non-positive definite-
ness when using information matrices to compute variance-covariance matrices.
Boundary value issues will be detailed in Section 2. Second, they require posi-
tive diagonal elements in the variance-covariance matrix; negative values prevent
SE computation. However, computational errors may produce negative diagonal
elements when inverting information matrices (Liu & Maydeu-Olivares, 2014).
For example, in the empirical data analysis in Section 5, the second structural
parameter’ s diagonal element in the Obs-based variance-covariance matrix is
negative, preventing SE calculation. This means that scenario (1) prevents com-
putation of all model parameter SEs, while scenario (2) prevents computation
of specific parameter SEs. These limitations restrict theoretical development
and practical applications of analytic information matrices.

Beyond analytic methods, bootstrap methods (Davison & Hinkley, 1997; Efron
& Tibshirani, 1993) offer an alternative for computing SEs and Cls, with para-
metric bootstrap (PB) and non-parametric bootstrap (NPB) being most com-
mon. PB and NPB are widely applied (e.g., at least 20 papers in Acta Psycho-
logica Sinica from January 2019 to August 2021 used bootstrap), highly gen-
eralizable, yet computationally intensive and time-consuming. Unlike analytic
information matrices, PB and NPB require fewer assumptions and less formula
derivation. These methods involve three steps: (1) obtain resampled datasets
from observed data; (2) estimate model parameters from each resampled dataset;
and (3) repeat these steps until reaching the predetermined number of resam-
ples, then compute SEs and CIs from the distribution of parameter estimates.
PB differs from NPB in that PB first estimates model parameters from observed
data, then simulates resampled datasets using these parameters, whereas NPB
draws resamples directly from observed data with replacement.

Although researchers suggest bootstrap can compute SEs and ClIs in CDMs (Ma
& de la Torre, 2020b) and theoretically address analytic information matrix
limitations, its estimation accuracy remains understudied. As computationally
intensive methods, their heavy computational load and long runtime restrict
both theoretical research and practical applications. For instance, in PB and
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NPB applications, too few resamples may affect accuracy, while too many reduce
efficiency. The optimal resample size remains controversial (e.g., Bai et al., 2016;
Efron & Tibshirani, 1993; Guo & Wind, 2021; Hayes, 2009, 2018; Lai, 2021).
Furthermore, PB and NPB performance in estimating CDM parameter SEs
and Cls across different scenarios requires further investigation. With advances
in multi-threading and parallel scheduling technologies, parallel computing has
been gradually applied to computationally intensive methods (Denwood, 2016;
Khorramdel et al., 2019). For bootstrap specifically, Zhang and Wang (2020)
developed the R package bmem using parallel bootstrap for statistical power
analysis (Zhang, 2014), and the linear mixed-effects model package lme4 (Bates
et al., 2015) also provides parallel bootstrap, which Jiang et al. (2021) used to
explore CI estimation for generalizability coefficients.

This paper addresses two main questions: (1) Drawing on previous parallel
bootstrap techniques, we develop parallel parametric bootstrap (pPB) and par-
allel non-parametric bootstrap (pNPB) methods tailored for CDMs to improve
computational efficiency. (2) We systematically examine pPB and pNPB per-
formance in estimating CDM parameter SEs and Cls. As demonstrated in this
paper, pPB and pNPB are simple, feasible methods that not only effectively
address important theoretical questions regarding SE and CI in CDMs but also
substantially enhance computational efficiency in practical applications.

The paper proceeds as follows: We first explain problems with analytic informa-
tion matrix SE computation, then detail the proposed pPB and pNPB meth-
ods. Section 4 presents simulation studies exploring performance under correctly
specified CDMs and attribute hierarchy conditions. Section 5 demonstrates the
role and value of pPB and pNPB through empirical data analysis. Finally, we
conclude with discussion and conclusions.

2 Analytic Information Matrix and Its Limitations

This section uses the identity-link G-DINA (Generalized Deterministic Input
Noisy Output “AND” gate; de la Torre, 2011) to present three analytic in-
formation matrices and explain potential issues with non-positive definiteness
and negative diagonal elements in variance-covariance matrices when computing
CDM parameter SEs and Cls.

2.1 Saturated CDM

Consider a cognitive diagnostic assessment with N examinees, J items, and
K attributes, where both attributes and items are dichotomously scored. The
N x J item response matrix is denoted as x = {z,,;}, and the J x K Q-matrix
is denoted as Q = {g;;}. In the saturated G-DINA model, the probability of
examinee n correctly answering item j is:
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K; K; K;
P(X,,;=1]a,,\) = /\j,0+z Aj KOkt Z )‘j,kk/ankank’+"'+)‘j,12-~-Kj H Qi
k=1 kK =k+1 k=1

where «,, is the nth examinee’ s attribute mastery pattern, q; defines the at-
tributes required to correctly answer item j, and A; contains all item j param-
eters. Appropriate constraints on the saturated G-DINA model yield various
special models.

For illustration with K = 2 and q; = (1,1), the saturated G-DINA item re-
sponse function can be expressed as:

Pian,) = Xjo T Aj1,1001 + A 21000 + Aj 12001 Qo
where A, is the intercept parameter representing the probability of correctly
answering item j by guessing without mastering any required attributes, A; ; ;
and A, , ; are main effect parameters for the first (a;) and second () attributes,
respectively, and A, ; 5 is the interaction effect between the two attributes.

When K = 2 and no attribute hierarchy exists, all possible attribute mastery
patterns are:

o = {(070)7 (1’ 0)7 (07 1)’ (17 1)}

Using the identity link function, structural parameters n describe the distribu-
tion of attribute mastery patterns. Since all attribute mastery pattern probabil-

ities sum to 1, the last structural parameter is constrained as 1, = 1 — 23:1 M-

2.2 CDM with Attribute Hierarchies

When attributes have hierarchical relationships, appropriate constraints on sat-
urated model structural and item parameters yield HCDMs (Templin & Brad-
shaw, 2014). Again using K = 2, q; = (1,1), and assuming a linear hierarchy
where «; must be mastered before oy, the possible attribute mastery patterns
become:

a={(0,0),(1,0),(1,1)}

Due to attribute hierarchy constraints, the third mastery pattern (0,1) from
the saturated structural model does not exist. In this example, the HCDM item
response function is:

Pi(a,) = Xjo+ A 11001 T A 1,000,100
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If the true model is HCDM but saturated G-DINA is used for estimation, some
structural parameters (e.g., 3) and item parameters (e.g., )‘j,2,1 in saturated
G-DINA) have true values of 0, causing redundancy in some CDM parameters.
Following previous research (Liu, 2018; Liu et al., 2021), parameters with true
values of 0 are termed impermissible parameters, while those with non-zero
true values are permissible parameters.

2.3 Analytic Information Matrix and Its Limitations

Under certain regularity assumptions (Bishop et al., 2007), the difference be-
tween maximum likelihood estimates 4 and true values «y follows a multivariate
normal distribution with mean vector 0 and variance-covariance matrix J—!
(Liu et al., 2016):

VNGE —7) 5 N(0,77Y)

where J is the expected Fisher information matrix calculated using true pa-
rameter values and expectations over single examinee response vectors (i.e., all
possible response patterns). However, since true parameter values are unknown
and possible response patterns grow exponentially with item count, J has only
theoretical value and cannot be applied in practice (Liu, Xin et al., 2019).

To address J° s limitations, researchers developed XPD, Obs, and Sw matrices
by substituting parameter estimates 7 for true values v and observed response
matrix x for expectations over single vectors (Liu, Xin et al., 2019; Philipp et
al., 2018; Liu et al., 2016). The XPD matrix uses cross-products of first-order
derivatives of the observed data log-likelihood:

wo- 3 (%5) (%)

The Obs matrix uses second-order partial derivatives:

%0, (
Z 8787

n=1

Obs matrix elements can also be expressed as (Liu & Maydeu-Olivares, 2014;
Liu, Xin et al., 2019):

Z fo Op,(7) Op,(7)

e = Po(7) 371 97

chinarxiv.org/items/chinaxiv-202201.00088 Machine Translation


https://chinarxiv.org/items/chinaxiv-202201.00088

ChinaRxiv [$X]

where 7, and v, represent any item parameter () or structural parameter (n),
O is the number of unique response patterns in x, f, is the observed proportion,
and p, (%) is the expected proportion for pattern o.

The Sw matrix, named for its shape, is:

Sw = Obs ' - XPD - Obs !

requiring both Obs and XPD matrices.

The limitations of analytic information matrices are threefold. First, boundary
value problems severely impact them. In CDMs, at least two scenarios cause
boundary values that prevent SE computation or inflate SEs (DeCarlo, 2011,
2019). One scenario involves intercept parameters Aj 0, which range between
[0,1]. When true values equal 0 or 1 (at parameter space boundaries), estimates
may approach these boundaries, causing item parameter boundary problems.
Another scenario involves impermissible structural parameters. When CDMs
contain attribute hierarchies but saturated models are used for estimation, im-
permissible item and structural parameters inevitably arise. Since structural
parameters range [0,1], impermissible parameters’ true values fall on boundaries,
with estimates potentially approaching 0 (e.g., 107%). Boundary problems cause
analytic information matrices to become unstable or singular (Liu et al., 2021).

Second, if impermissible structural parameter estimates deviate from their true
value of 0, these biased estimates violate the assumptions in Equation (5), ad-
versely affecting XPD, Obs, and Sw calculations. Third, since Obs equals XPD
minus the rightmost term in Equation (8), computational errors may produce
negative diagonal elements in Obs, preventing SE calculation (Liu & Maydeu-
Olivares, 2014). These limitations restrict analytic information matrices’ theo-
retical development and practical application.

3 Parallel Bootstrap Methods
3.1 Parallel Non-Parametric Bootstrap

NPB simulates population sampling to compute model parameter SEs. Treat-
ing original response matrix x as a “population,” NPB draws new “samples”
(resamples, denoted x*) with replacement, estimates model parameters 4* from
x*, repeats this B times, and computes SEs as the standard deviation of the B
7" estimates. However, NPB suffers from low computational efficiency (Ma &
de la Torre, 2020b).

The proposed pNPB implementation proceeds as follows:
Step 1: Determine resample size B, specify the fitted model, detect CPU core

count, and create corresponding parallel worker processes.

Step 2: Parallel sampling phase. In each worker: (a) draw resample x* from

~

original data x with replacement; (b) estimate model parameters 7° = (A ,7")
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using the GDINA package (Ma & de la Torre, 2020b) with the specified CDM.
Repeat (a) and (b) in each worker until reaching predetermined resample count
B.

Step 3: Compute variance-covariance matrix from the B 4" estimates. SEs are
obtained by taking square roots of diagonal elements.

3.2 Parallel Parametric Bootstrap

PB uses model parameter estimates 4 as “population parameters” to simulate
B resampled datasets x*, then estimates resampled parameters 3.

The proposed pPB implementation proceeds as follows:

Step 1: In addition to pNPB Step 1, estimate item and structural parameters
(A, 7)) from original data x using the specified CDM.

Step 2: Parametric parallel sampling phase. In each worker: (a) simulate
attribute mastery patterns for each examinee using structural parameters 7;
(b) generate response matrix x* using examinee attribute patterns and item

parameters \; (c) re-estimate model parameters §° = (5\*,77*) from x* using
GDINA (Ma & de la Torre, 2020b). Parallel workers repeat (a)-(c) until reaching
predetermined resample count B. Step 3 matches pNPB Step 3.

Compared to analytic information matrices, pNPB and pPB are more gener-
alizable, require no tedious formula derivation, need fewer assumptions (e.g.,
asymptotic normality of parameter estimates), avoid matrix inversion, are less
affected by boundary values, and are particularly suitable for SE and CI compu-
tation with impermissible structural parameters. Variance-covariance matrices
require only B 4° vectors, with diagonal elements never negative. Moreover,
compared to traditional NPB and PB, pNPB and pPB offer faster execution
and higher efficiency, enabling the first comprehensive, systematic investigation
of SE and CI performance using pNPB and pPB in CDMs.

4 Simulation Study
4.1 Research Purpose

This study focuses on pNPB and pPB performance under correctly specified
CDMs and boundary value problems. The simulation has two primary objec-
tives: (1) Examine pNPB and pPB performance in estimating SEs and Cls
under ideal conditions (correct model specification) and compare with analytic
XPD, Obs, and Sw methods. For generalizability, both data-generating and
fitted models use identity-link saturated G-DINA. (2) Investigate performance
when attribute hierarchies exist (i.e., when structural and item parameters con-
tain impermissible parameters). Note that XPD, Obs, and Sw often encounter
non-invertibility issues with attribute hierarchies (Liu et al., 2021), preventing
direct comparison with bootstrap methods under identical conditions.
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Literature review (e.g., Bai et al., 2016; Efron & Tibshirani, 1993; Guo & Wind,
2021; Hayes, 2009, 2018; Lai, 2021) reveals considerable controversy regarding
resample size selection, making this another simulation focus.

4.2 Research Method

We used the GDINA package (Ma & de la Torre, 2020b) for parameter estima-
tion, adapted open-source code from bmem (Zhang & Wang, 2020) and lme4
(Bates et al., 2015) for pNPB and pPB implementation, and used XPD, Obs,
and Sw estimation code from Liu et al. (2021) (available from authors). To
ensure CDM parameter identifiability, especially under attribute hierarchy con-
ditions (Gu & Xu, 2019, 2020), we adopted the Q-matrix from Ma and Xu
(2021) shown in Figure 1. To isolate the effects of experimental factors, we
assumed equal structural parameters and equal main/interaction effects across
conditions, eliminating parameter magnitude influences. Simulations ran on a
cloud server with an Intel i9-10980XE CPU (18 cores, 36 threads), with R = 500
replications per condition for stable results.

Figure 1. Q-matrix used in simulation study

Specifically, two data-generating models were used: saturated G-DINA and
HCDM with hierarchy (a; — ay, a7 — a5). For saturated G-DINA data, five
SE estimation methods were compared: XPD, Obs, Sw, pNPB, and pPB. For
HCDM data, only pNPB and pPB were used. Resample sizes had four levels:
200, 500, 3000, and 5000. Sample sizes were 1,000 and 3,000. Item quality
had three levels: high (P(0) = 0.1, P(1) = 0.9), medium (P(0) = 0.2, P(1) =
0.8), and low (P(0) = 0.3, P(1) = 0.7), where P(0) is guessing probability
and P(1) is correct response probability for examinees mastering all required
attributes. All conditions used saturated G-DINA for parameter estimation,
meaning parameters were correctly specified for saturated G-DINA data and
redundant (with some true-zero parameters) for HCDM data.

4.3 Evaluation Indicators

We evaluated SE estimation performance using bias and 95% CI coverage rates.
A model parameter’ s 95% CI is:

[3 —1.96 x SE(7),% + 1.96 x SE(3)]

If the 95% CI falls within [0.95 + 1.96 X \/0.95 x (1 —0.95)/R] (with R = 500
replications), interval estimation is considered accurate. Bias is computed as:

1 & . .
BIAS = E ; SEr(’Y) - SEempirical(’Y)
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where SE,, birical (V) 18 the standard deviation of 500 parameter estimate vectors
7" across replications.

4.4.1 Results Under Correctly Specified CDM Parameters

Figures 2 and 3 show 95% CI coverage rates and SE bias for item parameters us-
ing pNPB and pPB under correct model specification. Under high item quality,
nearly all item parameter 95% Cls fall within theoretical bounds (gray lines),
with bias approaching 0, and both metrics improve with larger sample sizes.
Under medium quality with N = 1000, most item parameters show good perfor-
mance despite some 95% Cls falling outside theoretical bounds and slight bias
fluctuations; with NV = 3000, especially when B > 500, most item parameters
demonstrate good 95% CI coverage and bias control. Under low quality, pNPB
and pPB performance diverges: with N = 1000, pNPB tends to overestimate
SE (most 95% CIs above theoretical bounds), while pPB tends to underestimate
SE (most below bounds). Performance improves with larger sample sizes, with
pPB outperforming pNPB. When B > 500, results are highly consistent across
conditions, with no noticeable differences between B = 3000 and B = 5000.

Figure 2. 95% CI coverage rates for item parameters using pNPB and pPB
under correctly specified CDM parameters

Figure 3. SE bias for item parameters using pNPB and pPB under correctly
specified CDM parameters

Figures 4 and 5 show 95% CI coverage rates and SE bias for item parameters
using analytic XPD, Obs, and Sw methods. Under high and medium quality,
item parameter SEs perform well. With N = 1000, Sw slightly outperforms
XPD and Obs; all improve with N = 3000. Comparing XPD, Obs, Sw, pNPB,
and pPB, Sw and Obs generally perform slightly better. Low quality severely
impacts XPD, Obs, and Sw performance: with N = 1000, XPD and Obs 95%
CIs mostly fall below theoretical bounds (underestimating SE), while Sw’ s
mostly fall above (overestimating SE). With N = 3000, most 95% ClIs fall
within theoretical bounds. Notably, under low quality and N = 1000, XPD
and Sw produce extreme SE estimates (e.g., >1000) for 9 and 86 parameters
respectively, indicating unstable performance. Overall, Obs performs slightly
better than other methods under low quality.

Figure 4. 95% CI coverage rates for item parameters using XPD, Obs, and Sw
under correctly specified CDM parameters

Figure 5. SE bias for item parameters using XPD, Obs, and Sw under correctly
specified CDM parameters

Figures 6 and 7 show 95% CI coverage rates and SE bias for structural pa-
rameters using bootstrap methods. Under high quality, both pNPB and pPB
perform excellently, with all 95% CIs within or on theoretical bounds and bias
nearly zero. Under medium quality with N = 1000, structural parameter 95%
CIs show increased variability but most SEs perform well with minimal bias;
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with N = 3000, both methods perform well. Low quality severely impacts per-
formance: with N = 1000, pNPB 95% CIs mostly exceed theoretical bounds
with positive bias, while pPB 95% ClIs all fall below with negative bias, and
increasing B shows no clear improvement. With N = 3000, performance im-
proves, with pPB slightly outperforming other B levels, though B increases
have minimal impact on pNPB.

Figure 6. 95% CI coverage rates for structural parameters using pNPB and
pPB under correctly specified CDM parameters

Figure 7. SE bias for structural parameters using pNPB and pPB under cor-
rectly specified CDM parameters

Figures 8 and 9 show 95% CI coverage rates and SE bias for structural pa-
rameters using analytic methods. Under high and medium quality, XPD, Obs,
and Sw perform well, with nearly all 95% CIs within or on theoretical bounds
and bias near zero. Low quality severely impacts performance: with N = 1000,
XPD and Obs 95% CIs fall below theoretical bounds (negative bias), while Sw’ s
mostly exceed (positive bias). With N = 3000, performance improves, especially
for Sw. Notably, under low quality and N = 1000, Sw produces extreme SE
estimates for 1 and 3 parameters respectively (outside plot ranges), again due
to extreme SE values. Overall, Sw performs comparably or better than other
methods, except under low quality and N = 1000 where all methods perform
poorly.

Figure 8. 95% CI coverage rates for structural parameters using XPD, Obs,
and Sw under correctly specified CDM parameters

Figure 9. SE bias for structural parameters using XPD, Obs, and Sw under
correctly specified CDM parameters

4.4.2 Results Under Redundant CDM Parameters

As noted, fitting saturated G-DINA to HCDM data causes boundary value prob-
lems and unstable SE estimates from analytic information matrices. Bootstrap
avoids matrix inversion, but pNPB and pPB performance requires investigation.

Under parameter redundancy, results are presented separately for permissible
and impermissible parameters. To display full results, 95% CI coverage rate
ranges are set to [0.3, 1]. Figures 10 and 11 show 95% CI coverage rates and
SE bias for permissible item parameters. Despite good performance for most
parameters under high and medium quality, some parameters show 95% CIs
substantially below theoretical bounds with large negative bias. These extreme
deviations remain consistent across experimental conditions and worsen with
N = 3000. This occurs because fitting saturated models to HCDM data incor-
rectly treats “impermissible” attribute patterns as “permissible,” biasing some
item parameter estimates and affecting their 95% CI coverage and bias. Compar-
ing Equations (3) and (4), when the true model is HCDM with linear hierarchy
but saturated CDM is used, impermissible pattern (0, 1) is incorrectly included,
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making structural parameter 7; and item parameter A; 5 ; have true values of
0. Aside from these extreme deviations, increasing B from 200 to 3000 slightly
improves 95% CI coverage for parameters near theoretical bounds, with high
consistency between B = 3000 and B = 5000. Under low quality, permissible
item parameter 95% CI coverage shows substantial variability.

Figure 10. 95% CI coverage rates for permissible item parameters under re-
dundant CDM parameters

Figure 11. SE bias for permissible item parameters under redundant CDM
parameters

Figures 12 and 13 show 95% CI coverage rates and SE bias for impermissible
item parameters. Overall, most impermissible item parameter 95% CIs fall
below theoretical bounds with negative bias, showing high consistency within
item quality levels. Sample size, item quality, and resample size have minimal
impact. pNPB slightly outperforms pPB for impermissible item parameter SE
estimation.

Figure 12. 95% CI coverage rates for impermissible item parameters under
redundant CDM parameters

Figure 13. SE bias for impermissible item parameters under redundant CDM
parameters

Figures 14 and 15 show 95% CI coverage rates and SE bias for permissible
structural parameters. Under high and medium quality, pNPB and pPB per-
form well, with 95% CIs within or on theoretical bounds, improving with larger
sample sizes and resample counts, and bias nearly zero. Item quality substan-
tially impacts structural parameter 95% CI coverage and bias, with increased
variability and deviation from zero as quality decreases. Under low quality with
N = 1000, pPB 95% CIs all fall below theoretical bounds (underestimating SE),
while pNPB 95% CIs mostly exceed (overestimating SE). Larger sample sizes
improve performance, but increased resample counts have minimal impact.

Figure 14. 95% CI coverage rates for permissible structural parameters under
redundant CDM parameters

Figure 15. SE bias for permissible structural parameters under redundant
CDM parameters

Figures 16 and 17 show 95% CI coverage rates and SE bias for impermissible
structural parameters. As previously discussed, redundant structural parame-
ters affect item parameter estimates and their SEs. Eliminating impermissible
structural parameters is valuable. Liu et al. (2021) explored using analytic
SEs with z-statistics (Equation 1) for significance testing. Accurate structural
parameter SEs are crucial for this purpose, but analytic methods suffer from
boundary and singular matrix problems. Bootstrap methods lack these limita-
tions, making impermissible structural parameter SE performance important.
Under high quality, pNPB and pPB 95% CIs slightly exceed theoretical bounds
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because bootstrap variation SE(7)*) exceeds empirical variation SE(7). How-
ever, absolute differences are minimal. Performance differences are small across
conditions, with resample size increases showing no improvement.

Figure 16. 95% CI coverage rates for impermissible structural parameters
under redundant CDM parameters

Figure 17. SE bias for impermissible structural parameters under redundant
CDM parameters

Under medium quality, pNPB 95% CIs mostly exceed theoretical bounds, while
pPB’ s mostly fall within bounds, indicating pNPB’ s non-parametric resam-
pling yields SE(7*) closer to SE(7). Larger sample sizes improve performance
(except pPB’ s third structural parameter). Resample size increases show no
improvement.

Under low quality, sample size substantially impacts impermissible structural
parameter SE performance. With N = 1000, pNPB 95% Cls exceed theoretical
bounds while pPB’ s fall below, because non-parametric resampling produces
larger SE(7*) than SE(7). Performance improves with larger samples, but
increasing B from 200 to 5000 has negligible impact.

Figure 18. Q-matrix for ECPE dataset

5 Empirical Data Analysis

The ECPE (Examination for Certificate of Proficiency in English; Templin &
Bradshaw, 2014) is a classic dataset in CDM research. Our ECPE data, obtained
from the CDM package (Robitzsch et al., 2020), contains responses from 2,922
examinees on 28 dichotomously scored English grammar items.

Content and psychometric experts identified three attributes: a; (morphosyn-
tactic rules), a, (cohesive rules), and ag (lexical rules). Figure 18 shows the
ECPE Q-matrix (Templin & Hoffman, 2013). These attributes may have a lin-
ear hierarchy: a; — ay — ay (Liu et al., 2021; Templin & Bradshaw, 2014;
Wang & Lu, 2021). Since structural parameter SEs are valuable for exploring
attribute hierarchies, we compare structural parameter SE estimates from our
methods with previous results (Liu et al., 2021) to demonstrate theoretical and
practical value.

Table 1. SEs of structural parameter estimates for ECPE data

Method n, 7o M3 M4 5 us 7
XPD  0.012 - 0.008 0.009 0.008 0.004 0.006
Obs 0.012 0.008 0.009 0.008 0.004 0.006

Sw 0.012 0.008 0.008 0.009 0.008 0.004 0.006
pNPB- 0.012 0.009 0.008 0.009 0.008 0.005 0.006
200
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Method n, 1o N3 T4 M5 N6 Uks

pNPB- 0.012 0.009 0.008 0.009 0.008 0.005 0.006
500

pNPB- 0.012 0.009 0.008 0.009 0.008 0.005 0.006
3000

pPB-  0.012 0.008 0.008 0.009 0.008 0.004 0.006
200

pPB-  0.012 0.008 0.008 0.009 0.008 0.004 0.006
500

pPB-  0.012 0.008 0.008 0.009 0.008 0.004 0.006
3000

« »

Note: Numbers after pNPB and pPB indicate resample size. indicates

non-computable SE.

5.1 Data Analysis Method

We estimated parameters using identity-link saturated G-DINA and SEs using
pPB and pNPB, comparing computation times with PB and NPB. Parame-
ter estimation used GDINA; XPD, Obs, and Sw SE code was adapted from
deminfo (Liu & Xin, 2017). All programs ran on a cloud server. Key points:
(1) The saturated structural model has 22 = 8 attribute mastery patterns;
since structural parameters sum to 1, the eighth parameter is constrained as
ng =1— Zzzl .. (2) Theoretically, more resamples yield more accurate SEs.
We included B = 10,000 for pPB and pNPB but did not examine PB and NPB

runtimes due to excessive time requirements.

Figure 19. All possible attribute mastery patterns and corresponding struc-
tural parameter estimates for ECPE data

5.2 Research Results

Figure 19 shows the eight attribute mastery patterns and their structural param-
eter estimates. Table 1 presents SEs for these estimates. Comparing methods,
pPB SEs are numerically very close to XPD SEs, while pNPB SEs are closer
to Sw SEs. pNPB SEs are generally larger than pPB SEs, consistent with sim-
ulation results for permissible and impermissible structural parameters under
redundancy.

If linear hierarchy o; — oy — a3 exists in ECPE data, structural parameters
2, 3, and 6 (gray in Figure 19) should approximate 0 (Templin & Bradshaw,
2014). However, whether 75 = 0.014 is “approximately zero” requires statistical
testing. Liu et al. (2021) used XPD, Obs, and Sw SEs in z-statistics (Equation
1) to test structural parameter significance. After significance level correction,
all methods (except Obs, which could not compute SE for parameter 2) con-
sistently confirmed the linear hierarchy. Since structural parameter estimates
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7 are identical across methods, only SE(7) varies. Our pNPB and pPB SEs
for parameters 2, 3, and 6 fall between the minimum and maximum analytic
SEs, so computed z-statistics also fall between analytic method extremes. Thus,
both methods confirm the linear hierarchy. Importantly, when CDMs contain
attribute hierarchies, XPD, Obs, and Sw frequently encounter non-invertibility
issues, and Obs may produce negative diagonal elements preventing SE com-
putation (e.g., parameter 2). Bootstrap computes SEs directly from resampled
parameter estimates, avoiding matrix inversion. Consistent with simulations,
increasing resample size has minimal impact on SE estimates, particularly for
B > 3000.

To illustrate computational efficiency gains, we compared runtimes for 200, 500,
and 3000 resamples: pNPB took 10.93s, 25.43s, and 135.36s; pPB took 15.42s,
36.01s, and 200.96s; NPB took 158.43s, 392.97s, and 2282.33s; PB took 220.77s,
537.15s, and 3201.17s. pNPB and pPB substantially improve computational
efficiency.

6 Discussion and Outlook

Estimating model parameter SEs and Cls in CDM research is valuable yet chal-
lenging (de la Torre, 2011; Liu et al., 2021; Ma & de la Torre, 2019; von Davier,
2014). Analytic information matrices XPD, Obs, and Sw perform well in many
applications (Liu, Xin et al., 2019; Philipp et al., 2018; Liu et al., 2016) but re-
quire positive definiteness and suffer from boundary problems (DeCarlo, 2011,
2019). Traditional bootstrap methods (NPB, PB) have fewer assumptions and
strong generality but are computationally inefficient and time-consuming (Ma
& de la Torre, 2020b). This study proposes pNPB and pPB for CDM parameter
SE and CI computation, systematically examining effects of model specification,
sample size, resample count, item quality, and estimation method. We demon-
strate pNPB and pPB’ s effectiveness and efficiency in analyzing ECPE data
with potential attribute hierarchies.

Notably, besides analytic information matrices and bootstrap, other methods
like MCMC can compute CDM parameter SEs and Cls. MCMC can estimate
parameters and compute SEs from posterior standard deviations. However,
MCMC estimation can be extremely time-consuming (e.g., >1 hour), and study-
ing SEs and CIs requires many replications (e.g., 500+) for reliable simulation
results (Liu, Xin et al., 2019; Philipp et al., 2018; Liu et al., 2016). Addi-
tionally, Bayesian methods may be sensitive to prior distributions (Jing et al.,
2021). Therefore, this study does not examine MCMC performance for CDM
parameter SE and CI estimation.

6.1 Discussion

(1) Bootstrap performance in SE and CI estimation

Fundamentally, both NPB and PB simulate population sampling: treating the
sample or sample-estimated parameters as the “population”for resampling. Boot-
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strap cannot generate information beyond its “sample.” Thus, when observed
CDM data contain more accurate information about unknown parameters, boot-
strap performs better. Simulation results show that model specification, sample
size, and item quality substantially impact pNPB and pPB performance. Under
correct specification, observed data fit the model perfectly, while redundancy
conditions show the opposite: fitting saturated models to hierarchical data bi-
ases parameter estimates due to impermissible parameters, highlighting the im-
portance of attribute hierarchy testing (Hu & Templin, 2020; Liu et al., 2021;
Ma & Xu, 2021). Larger samples contain more parameter information, yield-
ing more accurate estimates. Higher item quality better distinguishes attribute
mastery patterns, providing more information and improving pNPB and pPB
performance. An interesting simulation finding is that under low quality, the
last four items (each measuring 3 attributes with 8 parameters to estimate) show
substantially worse 95% CI coverage and bias than earlier items, indicating less
available information.

(2) Resample size effects on bootstrap

Bootstrap is computationally intensive: more resamples require more time
(Efron & Tibshirani, 1993), though theoretically increasing accuracy (Hayes,
2009, 2018). Optimal resample size remains controversial (Bai et al., 2016;
Guo & Wind, 2021; Lai, 2021). Leveraging parallel bootstrap efficiency, we
examined B = 200,500, 3000, and 5000. Overall, resample size has minimal
impact on pNPB and pPB performance. When B > 500, results stabilize, with
B = 3000 and B = 5000 producing nearly identical results. Under correct
specification, increasing B from 200 to 3000 slightly improves some parameters’
95% CI coverage and bias. Under non-ideal conditions (low quality, imper-
missible parameters), resample size increases have minimal impact. Empirical
analysis shows pNPB results with B = 200, 500, and 3000 differ only slightly
from B = 10,000, and pPB with B = 3000 is nearly identical to B = 10, 000.
Theoretically, CDM information matrices measure information about model
parameters in observed data (Liu, Xin et al., 2019), while SEs quantify
estimation uncertainty (Liu et al., 2021). Thus, the amount of “information” in
observed data is the primary factor affecting SE performance. Our simulation
and empirical results support this theory, suggesting that information quantity,
not resample count, most influences bootstrap performance. However, whether
this conclusion generalizes requires further study.

6.2 Research Outlook

Several important questions warrant future research. (1) This study used 30
items and 4 attributes; future work should examine effects of different item and
attribute counts on pNPB and pPB. (2) We only examined hierarchy (o; — s,
ay — @5); SE performance under different attribute hierarchies, especially for
structural parameters, needs exploration. Real applications may involve both
attribute hierarchies and correlations (Hu & Templin, 2020; Liu et al., 2021),
which this study did not consider. pNPB and pPB performance in exploring
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and validating attribute hierarchies deserves further investigation. (3) Beyond
the 95% CI method used here, other bootstrap-based CI methods warrant at-
tention (e.g., Jiang, 2021; Lai, 2021). (4) Analytic information matrices often
fail to invert with attribute hierarchies, preventing direct method comparisons.
Liu et al. (2021) preliminarily proposed a two-stage estimation approach to se-
quentially eliminate impermissible structural parameters, a valuable direction.
Under correct specification, analytic methods (e.g., Obs, Sw) sometimes slightly
outperform pNPB or pPB. Future studies could compare analytic methods using
two-stage estimation with pNPB and pPB. (5) pNPB and pPB have potential
beyond SE and CI computation, including differential item functioning detec-
tion, item-level model comparison, and Q-matrix validation. (6) While this
study examined pNPB and pPB within CDMs, these highly generalizable meth-
ods could be developed and applied to other statistical and measurement models
to resolve conflicting conclusions from prior research (e.g., Efron & Tibshirani,
1993; Hayes, 2009, 2018; Lai, 2021).

Results show: (1) Under correctly specified CDMs with high or medium item
quality, pNPB and pPB perform well for item and structural parameter 95%
CI coverage and bias, improving with larger samples and better item quality.
Low quality severely impacts performance, with pNPB overestimating and pPB
underestimating SEs. (2) Under redundant parameters with high or medium
quality, most permissible item parameters and nearly all permissible structural
parameters show good 95% CI coverage and bias, though some item parameters
exhibit extreme deviations. Impermissible parameter 95% CI coverage is poor
under most conditions. (3) Empirical analysis shows pNPB and pPB SEs con-
firm previous findings of linear attribute hierarchies in ECPE data, with massive
computational efficiency gains over NPB and PB. (4) Based on simulation and
empirical results, B = 200 resamples may suffice for quick SE preview, while
B = 3000 or more is recommended for accurate estimation.

Key words: cognitive diagnostic model, standard error, confidence interval,
bootstrap, parallel computing method

Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv —Machine translation. Verify with original.
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