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Abstract

Symptoms of Autism Spectrum Disorder (ASD) manifest during early infancy
and toddlerhood, wherein earlier detection facilitates earlier intervention and
yields superior treatment outcomes. Traditional approaches to early autism
screening and diagnosis exhibit limitations in assessment methodologies and
procedural workflows, rendering them inadequate to meet the demands of large-
scale screening and diagnostic applications. With the rapid advancement of ar-
tificial intelligence technologies, the deployment of intelligent methods for large-
scale, unobtrusive early screening and diagnosis of autism is gradually becoming
feasible. Over the past decade, domestic and international research explorations
into intelligent identification methods for autism have amassed substantial find-
ings across six domains: classical task behaviors, facial expressions and emo-
tions, eye movements, brain imaging, motor control and movement patterns,
and multimodal data. Future research should concentrate on establishing a do-
mestic intelligent medical screening and diagnostic framework for early autism,
developing screening tools tailored for infant and toddler patients, constructing
intelligent identification models for infants and toddlers with autism that inte-
grate multimodal data, and formulating refined diagnostic methodologies that
incorporate brain imaging technologies.
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Abstract

Symptoms of Autism Spectrum Disorder (ASD) manifest during early infancy,
and earlier detection combined with timely intervention yields significantly bet-
ter therapeutic outcomes. Traditional approaches to early autism screening and
diagnosis suffer from limitations in assessment methods and procedural work-
flows, rendering them inadequate for large-scale screening demands. With the
rapid advancement of artificial intelligence technologies, intelligent methods for
conducting large-scale, non-intrusive early screening and diagnosis of autism
have become increasingly feasible. Over the past decade, domestic and inter-
national research on intelligent autism detection has accumulated substantial
findings across six domains: behaviors in classic diagnostic tasks, facial expres-
sions and emotions, eye movements, brain imaging, motor control and move-
ment patterns, and multimodal data integration. Future research should focus
on establishing a domestic intelligent medical screening and diagnostic system
for early autism, developing screening tools specifically for infants and toddlers,
constructing intelligent recognition models for autistic infants that fuse multi-
modal data, and developing refined diagnostic methods that incorporate brain
imaging technology.

Keywords: autism spectrum disorder, early screening and diagnosis of autism,
intelligent recognition of autism, artificial intelligence, multimodal data

1. Introduction

According to the Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition (DSM-5) published by the American Psychiatric Association, Autism
Spectrum Disorder (ASD), also known as autism, is defined as a pervasive de-
velopmental disorder resulting from neurodevelopmental dysregulation (Hodges
et al., 2020). Characterized primarily by impairments in social communication
and restricted, repetitive patterns of behavior and interests, ASD predominantly
affects children.

The World Health Organization’ s 2019 epidemiological survey estimated that
approximately 1 in 160 children worldwide suffers from autism, with prevalence
rates showing a yearly increase. The U.S. Centers for Disease Control and
Prevention reported autism rates of 1 in 68 in 2016, rising to 1 in 59 by 2020
(Maenner et al., 2020). In China, limited by a late start in research and a
shortage of professional diagnosticians, no authoritative epidemiological data
on childhood autism currently exist. The first “Report on the Development of
Children with Autism in China,” released in 2014, indicated a prevalence rate of
approximately 1% among Chinese children. A 2020 nationwide epidemiological
study assessing autism in Chinese children aged 6-12 years reported a prevalence
of 0.70% (Zhou et al., 2020). According to the “Report III on the Development
Status of Autism Education and Rehabilitation in China,” the total number of
individuals with autism in China exceeds 10 million, including over 2 million
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children aged 0-12, with nearly 200,000 new cases annually. Once considered a
rare condition, autism now ranks as the second most common disability among
young children in China, surpassed only by intellectual disability.

Autism is a lifelong condition with no known cure, causing significant personal
suffering while imposing increasingly heavy burdens on families and society. A
2015 U.S. report on socioeconomic costs estimated that autism-related health-
care expenditures, non-medical costs, and productivity losses accounted for
0.994% to 2.009% of national GDP, projected to rise to 0.982% to 3.6% by
2025 (Liu et al., 2015). Chinese surveys indicate that the cost of raising a child
with autism (19,582.4 RMB) significantly exceeds that for children with intel-
lectual disabilities (6,391 RMB) or physical disabilities (16,410 RMB) (Dawson
et al., 2018). The high prevalence of autism thus creates an urgent need for
scientific interventions to alleviate symptoms, improve individual functioning,
and reduce familial and societal burdens.

Earlier detection and intervention lead to better prognostic outcomes (Matson
et al., 2008). The high neuroplasticity of infants and toddlers makes timely,
appropriate early intervention particularly effective for enhancing adaptive and
cognitive functioning (Xu & Yang, 2014). However, parents often do not no-
tice significant developmental anomalies and behavioral manifestations until
children reach 2-3 years of age, frequently overlooking subtle or even obvious
abnormalities between six months and two years due to inexperience. Moreover,
autism diagnosis relies primarily on clinical expertise, and the journey from
parental concern to confirmed diagnosis involves lengthy delays, lacking conve-
nient and objective diagnostic tools. Consequently, large-scale, non-intrusive
early screening for infants and toddlers, followed by prompt diagnostic referral
for at-risk cases, is essential.

Over the past decade, computer vision, speech technology, deep learning, and
other AT and big data mining techniques have been successfully applied to men-
tal health assessment, automated medical diagnosis, and intervention and re-
habilitation, offering the potential for breakthroughs in early autism screening
and diagnosis. Applying Al to automated and refined autism screening can
lower screening barriers, enabling large-scale, non-intrusive screening of young
infants in home or community settings, providing early disease warnings and
accelerating intervention workflows. This paper first reviews traditional screen-
ing and diagnostic tools for infants with autism, then systematically categorizes
research progress over the past decade on intelligent recognition of autism in
infants and toddlers (0-3 years). Studies on intelligent recognition of autism in
children and adolescents of other ages are also reviewed, as their data collection
methods and intelligent recognition techniques offer valuable insights for infant
autism detection. Finally, we discuss unresolved issues and future research di-
rections, offering new perspectives for establishing an Al-assisted early screening
and diagnostic system for autism in China.
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2. Traditional Autism Screening and Diagnostic Methods

The earliest symptoms of autism appear within the first one to two years of life
(Matson & Goldin, 2014), with 50% of parents reporting symptoms by age 2
and 90% reporting clear symptoms by age 3 (Matson et al., 2008). The typical
age of diagnosis is 3 years (Gilmore et al., 2018; Pierce et al., 2019). Missing
the optimal intervention window substantially reduces the effectiveness of sub-
sequent treatments, making early diagnosis and intervention critical. In recent
years, scholars worldwide have advocated for early screening at 18-24 months,
with immediate referral for comprehensive screening upon detection of suspi-
cious symptoms. Positive screening results trigger early diagnostic assessment
and prompt intervention to achieve optimal rehabilitation outcomes (Hyman et
al., 2020). Early screening thus forms the foundation for early diagnosis, which
in turn is prerequisite for early intervention.

Traditional early screening methods fall into two categories: caregiver-report
questionnaires or professional observation-based rating scales, and game-task-
based observational checklists. These tools can be used from as early as 6
months of age, typically spanning at least a 6-month age range (see Table 1).
Commonly used primary screening tools include the Checklist for Autism in Tod-
dlers (CHAT), Modified CHAT (M-CHAT), Pervasive Developmental Disorder
Screening Test (PDDST), and Early Screening for Autistic Traits (ESAT), which
are suitable for primary healthcare settings and mostly rely on caregiver report.
Among these, CHAT is the most rigorously researched and validated tool for
infant autism detection (You & Yang, 2006). Secondary screening tools include
the Autism Behavior Checklist (ABC), Baby and Infant Screen for Children
with Autism Traits (BISCUIT), Screening Tool for Autism in Two-Year-Olds
(STAT), and the Autism Observation Scale for Infants (AOSI), which generally
require the child’ s presence and professional observation.

The primary diagnostic criterion is DSM-5, with the “gold standard” diagnos-
tic tools being the Autism Diagnostic Observation Schedule, Second Edition
(ADOS-2) and the Autism Diagnostic Interview-Revised (ADI-R) (Akshoomoff
et al., 2006; Lord et al., 1994). ADOS-2 involves direct observation of infants
in standardized activities, while ADI-R is a semi-structured caregiver interview;
both require assessment by trained specialists.

Table 1. Commonly Used Early Screening Tools for ASD (in months)

Tool Authors Age Range Assessment Method
CHAT Baron-Cohen  18-24 Caregiver report +
et al. (1992) observation
M-CHAT Robins et 16-30 Caregiver report
al. (2001)
PDDST-  Seigel (2004) 12-48 Caregiver report
IT
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Tool Authors Age Range Assessment Method

ESAT Dietz et 14-15 Caregiver report
al. (2006)

FYI Reznick et 12-24 Caregiver report
al. (2007)

ABC Krug et 18+ Caregiver report
al. (1980)

CARS Schopler et 24+ Professional observation
al. (2010)

BISCUIT Matson et 17-37 Caregiver report
al. (2007)

STAT Stone et 24-36 Play-based observation
al. (2000)

AOSI Bryson et 12-36 Semi-structured play
al. (2000) observation

ADEC Young (2007) 12-36 Interactive items

While some traditional tools have gained widespread acceptance, they suffer
from limitations in assessment methodology and efficiency that prevent them
from meeting large-scale screening needs. First, early autism symptoms and
risk signals require specialist judgment, imposing professional demands on ob-
servers (Taylor et al., 2017). The evaluator’ s expertise, institutional resources,
and cultural background all affect the reliability and validity of autism assess-
ments (de Belen et al., 2020). Second, confirming an autism diagnosis involves
a time-consuming and costly process of caregiver judgment, clinical interviews,
observation, and evaluation (Wiggins et al., 2006). Third, autism symptom
manifestations are highly heterogeneous, with some clinical features remain-
ing unstable before ages 2-3 (Chen et al., 2011). Additionally, environmental
and economic constraints limit clinicians to brief assessments rather than ex-
tended naturalistic observation, often resulting in inadequate symptom evalua-
tion. Consequently, researchers urgently need to develop new techniques that
simplify screening and diagnostic workflows while reducing time and labor costs,
without compromising accuracy.

Al-assisted automated medical diagnosis has advanced rapidly. For instance,
computer vision-based facial detection has enabled symptom recognition or pre-
diagnosis for over 30 diseases, including psychiatric conditions such as ADHD
and depression (Thevenot et al., 2017). Intelligent autism detection for in-
fants offers several advantages: (1) it enables acquisition of naturalistic, multi-
dimensional, multimodal behavioral data for comprehensive analysis, ensuring
valid and objective assessments that provide reliable pre-diagnostic information
to support clinical decisions; (2) computer vision can capture subtle movements
in infants with autism that are unobservable to the naked eye, effectively iden-
tifying atypical behaviors or discovering new early risk markers at lower cost
and with less invasiveness than manual screening, making it suitable for home
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or community healthcare settings.

3. Intelligent Recognition Technology for Early Autism

Although researchers have identified numerous core symptoms and early risk
markers for autism, diagnosing young infants remains challenging due to sub-
stantial heterogeneity across autism subtypes, specific symptoms, and severity
levels. Moreover, behavioral manifestations in infants with autism often co-
occur with typical early developmental characteristics (Vyas et al., 2019) and
are influenced by non-autism factors such as cognitive functioning and age (Li
et al., 2019). Caregiver reports of early symptoms are prone to recall bias, while
clinical observation is limited by the need for child cooperation and suffers from
sampling bias. Aggregating extensive behavioral data—particularly naturalistic
daily behaviors—and using objective methods to synthesize multi-source infor-
mation would substantially improve screening accuracy and reliability.

AT technologies including computer vision, intelligent sensors, machine learn-
ing, and deep learning have been successfully applied to early autism warning
(Hazlett et al., 2017) and robot-assisted therapy (Zheng et al., 2015). Mean-
while, the autism field generates vast amounts of data daily, with foundational
datasets reaching sufficient scale to improve diagnostic efficiency through histor-
ical data utilization (Liao et al., 2021). Following PRISMA guidelines (Moher
et al., 2009), we searched Web of Science, PubMed, IEEE Xplore, and ProQuest
for literature published between 2010-2020 using keywords “autism spectrum
disorder” ( “autism” ) AND “machine learning” ( “deep learning,” “computer
vision,” “affective computing” ). After removing duplicates, 741 articles were ini-
tially retrieved. Based on our research focus of “intelligent recognition for early
autism,” we applied fixed criteria: (1) human autism studies only, excluding
animal research; (2) focus on intelligent technology for screening/diagnosis, not
intervention/treatment; (3) exclusion of genetic or biomarker studies; (4) focus
on infants, children, and adolescents, excluding adults unless particularly rele-
vant; (5) aim of autism detection or risk behaviors in classic assessment tasks,
not derived behaviors (e.g., self-injury, sleep). This yielded 576 target articles.

These studies revealed that decade-long efforts in automated autism detection
have employed diverse data types, which we categorize into six subdomains: (1)
classic task behavior (114 articles); (2) facial expressions and emotions (144
articles); (3) eye movement (18 articles); (4) brain imaging (169 articles); (5)
motor control and movement patterns (58 articles); and (6) multimodal data
(73 articles). Using citation ranking and snowball sampling, we selected 80 key
articles for this review, which we present below by subdomain.

Figure 1. Literature Review Process Flowchart
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3.1 Automatic Recognition Based on Classic Task Behaviors

The first step in early autism diagnosis involves screening, assessing, and pro-
cessing early warning signals (Chen et al., 2011). Retrospective studies (parent
reports, home video analysis), prospective studies, early screening scales, and
clinical diagnoses have extensively validated early atypical behaviors, yielding
numerous classic clinical assessment tasks and corresponding behavioral indi-
cators, such as the response-to-name and visual tracking tasks in AOSI. Re-
cent research has proposed automated detection models for atypical behaviors
in these classic tasks. Researchers typically employ non-contact vision systems
and sensor technologies (device front cameras, RGB cameras, Kinect 3D sensors)
to collect multi-dimensional behavioral data including facial expressions, head
movements, limb movements, and acoustic features during task performance, de-
veloping task-specific anomaly detection algorithms and automated assessment
models to replace manual observation and improve screening efficiency. Below,
we illustrate data collection techniques, procedures, and predictive models using
response-to-name and visual attention tasks as examples.

Response to Name (RTN) is a classic task ubiquitous in early autism screen-
ing scales and clinical diagnosis. Infants begin responding to their names by 4-
6 months, selectively turning their heads when hearing their name, demonstrat-
ing comprehension of its social significance (Imafuku et al., 2014). Traditionally,
RTN requires live observation or post-hoc annotation by professionals using scor-
ing manuals. However, atypical RTN behaviors can be quantified as computable
metrics such as eye gaze, head pose changes, and response latency. For exam-
ple, Bidwell et al. (2014) analyzed audio-video recordings of 50 toddlers (15-
30 months) from the publicly annotated Multimodal Dyadic Behavior Dataset
(MMDB). Using ceiling-mounted Kinect and front cameras with trackers, they
estimated head pose changes, using yaw angle and response latency as behavioral
indicators to predict positive/negative responses to social stimuli (name calling).
Different classifiers achieved up to 89.4% precision and 83.3% recall. Wang et
al. (2019) developed an autism-assisted screening system for RTN tasks en-
compassing experimental protocols, data collection, and automated assessment
to reduce labor costs, particularly valuable in medically underserved regions.
Their multi-sensor system (Kinect + 2 RGB cameras) simultaneously captured
facial, gaze, posture, and vocal behaviors in toddlers (mean age 2 years), im-
plementing pedestrian detection, skeleton extraction (Microsoft Kinect SDK),
facial expression recognition (Baltrusaitis et al., 2015), facial landmark detec-
tion and tracking (Baltrusaitis et al., 2013), eye center localization (Wang et al.,
2018), and head pose estimation (Baltrusaitis et al., 2016). Using eye center
localization and head pose algorithms, they employed gaze rotation angle and
fixation duration as behavioral indicators, achieving 92.7% average classification
accuracy.

Atypical attention assessment is another classic task in early autism screen-
ing. Current methods can automatically identify multiple atypical attention
features from audio-video and image data, such as disfluent visual tracking
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(Zwaigenbaum et al., 2005), reduced face-looking frequency (Ozonoff et al.,
2010), and weak attention disengagement (Elsabbagh et al., 2013). Hashemi
et al. (2014) used facial detection and tracking to automatically assess two atyp-
ical visual attention tasks from AOSI: (1) attention disengagement—shifting gaze
between competing visual stimuli; and (2) visual tracking—following a moving
object across midline. Using GoPro Hero cameras to record multiple trials of
12 high-risk infants (5-18 months), they evaluated visual attention via yaw and
pitch head movements. Automated assessments showed Cohen’ s Kappa of 0.75
with expert ratings, far exceeding non-expert inter-rater reliability (0.27-0.37).
Bovery et al. (2019) developed a mobile task to measure atypical attention,
presenting social and non-social stimuli on split screens while recording facial
dynamics of 104 toddlers (16-31 months) via front camera. They estimated head
pose by computing rotation parameters between 51 facial landmarks (Hashemi
et al., 2015) and a 3D canonical face model (Fischler & Bolles, 1981), combining
yaw angle and iris position to estimate attention direction and measure looking
time, preferences, and shifts. Campbell et al. (2019) used a similar paradigm
to assess atypical attention and RTN in 16-31-month-olds, finding high con-
cordance between automated RTN assessment and expert ratings (ICC = 0.84,
95% CI 0.67-0.91), with 96% sensitivity and 38% specificity.

Current research has integrated multiple classic clinical tasks into mobile ap-
plications combining tasks, data collection, and algorithms, creating integrated,
low-cost, scalable autism screening tools applicable beyond laboratories to pri-
mary care clinics, schools, and homes. These tools have enabled automated de-
tection of atypical emotions, social referencing, social smiling, and RTN, demon-
strating promising predictive performance (Hashemi et al., 2015; Hashemi et al.,
2018). However, they remain limited to relatively simple tasks; complex tasks
pose greater challenges due to more diverse response patterns in young children.
For instance, ADOS’ s “bubble play” assesses “shared enjoyment,” requiring
a dimensional behavioral framework and multimodal temporal modeling of ex-
pressions, gaze, spontaneous actions, and vocalizations for effective detection.

3.2 Automatic Recognition Based on Facial Expression and Emotion
Data

Social communication deficits are hallmark features distinguishing children with
autism from typically developing peers, manifesting in socio-emotional reci-
procity and nonverbal communication, such as impaired facial expression imita-
tion and reduced diversity/intensity of expressions. Computer vision-based fa-
cial expression analysis overcomes human perceptual limitations, enabling rapid,
objective automatic recognition of autism.

Recent advances in computer vision have propelled AI emotion recognition, pri-
marily focused on developing algorithms to classify facial emotions from images
or videos into basic emotion categories (de Belen et al., 2020). Researchers
have attempted to build algorithms detecting abnormal emotion cognition and
expression for automated autism identification in infants. However, limited
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sample sizes due to the challenges of recruiting autism populations have con-
strained model development. In contrast, typical-population emotion recogni-
tion has yielded numerous models and public datasets. One research approach
involves transferring or adapting existing models based on typical-population
facial features. For example, Han et al. (2018) extracted and compared facial
expression features between typical individuals and children with autism using
the FERET and Cohn-Kanade (CK+) datasets, proposing a sparse coding-based
feature transfer learning algorithm that achieved over 80% accuracy in real-time
emotion recognition during child-robot interactions.

Researchers have collected static facial images or dynamic videos of infants in
laboratory or natural settings to construct emotion recognition or autism classifi-
cation models with promising accuracy. Social smiling is an important early risk
marker (Bi et al., 2020), particularly infant smiles during mother-infant interac-
tion, which are key signals for autism detection. Automated smile recognition in
clinical and home environments can enhance early screening efficiency. Tang et
al. (2018) trained a Convolutional Neural Network (CNN) on 77,000 manually
annotated video frames of 34 infants (6-24 months, including 11 high-risk for
autism) during mother-infant interaction, achieving 87.16% average accuracy in
automatic smile detection. Li et al. (2019) identified facial expressions, action
units, arousal, and valence as important facial features for autism classification.
They recorded facial videos of 105 children watching videos via mobile device
front cameras, using CNN models pretrained on AffectNet and EmotioNet with
temporal feature extraction to build a binary classification model, achieving
0.76 sensitivity and 0.69 specificity. Shukla et al. (2017) proposed an automatic
developmental disorder detection method from facial images, including ASD,
cerebral palsy, fetal alcohol syndrome, Down syndrome, intellectual disability,
and progeria. Using a fine-tuned AlexNet CNN on over 2,000 facial images and
SVM for binary classification, they achieved 93.33% average precision for autism
classification, outperforming non-expert human classification.

Beyond emotion classification, research has examined the process of facial expres-
sion production in autism. Methods like Facial Action Unit coding detect and
track micro-facial movements invisible to the naked eye, quantifying expression
generation abilities—such as onset detection and regional muscle activation pat-
terns—facilitating refined diagnosis and targeted intervention. Leo et al. (2019)
proposed a computational framework for analyzing facial emotion expression
abilities in autism, comprising four modules: face detection, landmark detec-
tion/tracking, action unit intensity estimation, and expression analysis. Using
facial videos of 17 individuals with autism (6-13 years) and 10 typically de-
veloping toddlers (26-35 months) producing four basic emotions, the method
accurately predicted expert-rated expression scores (binary classification) with
0.90 precision and 0.85 recall for the autism group. It also revealed that in-
dividuals with autism used both upper and lower face regions for happiness,
fear, and anger, but primarily the lower face for sadness. Guha et al. (2016)
used motion capture to study subtle dynamic features of facial expressions in
high-functioning autism patients (9-14 years), recording 32 facial markers at
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100 fps while participants imitated fixed emotion sequences. Multiscale entropy
analysis revealed lower dynamic complexity and reduced variability in facial ex-
pressions, particularly in the eye region. Ahmed and Goodwin (2017) applied
facial expression analysis to computer-assisted instruction for autism, measuring
learning engagement through facial changes to support teaching. Using front-
camera videos of autistic adolescents (mean age ~12 years) during learning, they
coded action units via FACS and used CERT to obtain head orientation time
and action unit activation states as engagement metrics.

Facial emotion recognition and expression features remain active research areas
in autism. Automated analysis addresses limitations of manual coding, which
is time-consuming and impractical for large samples or real-time analysis. Cur-
rent research can be categorized by expression type (spontaneous vs. imitated),
emotion-elicitation stimuli (videos, sensory input, social interaction), data type
(static images vs. dynamic videos), and assessment goals (qualitative vs. quan-
titative). Applications include “therapy robots” that automatically recognize
emotions in real-time for targeted intervention, and tools that help clinicians
“read” facial expressions to improve diagnostic effectiveness. A key challenge
is annotating large video datasets, as manual labeling is labor-intensive while
crowdsourced annotation suffers from low inter-rater reliability. Kalantarian et
al. (2019) proposed three automatic labeling algorithms for six basic emotions
(disgust, neutral, surprise, fear, anger, happiness) in children’ s facial videos
(mean age 8.5 years), showing relatively good performance for the first four
emotions.

3.3 Automatic Recognition Based on Eye Movement Data

Eye contact is a crucial nonverbal communication element indicating interest,
attention, and engagement in social interaction, serving as an important indi-
cator for language disorders, emotional states, and early autism risk markers.
Substantial evidence demonstrates significant differences in gaze patterns be-
tween infants with autism and typically developing peers, including atypical
fixation, eye contact, and joint attention (Chong et al., 2017), as well as dif-
ferential preferences for social versus non-social images (Campbell et al., 2014;
Chawarska et al., 2013; Shi et al., 2015).

Eye tracking is a common method for measuring social perception and pref-
erences, capturing gaze trajectories ideal for studying perceptual anomalies in
autism. Traditional methods include head-mounted devices requiring lengthy
adaptation periods for young children, or viewpoint tracking limited to screen-
based laboratory settings that cannot measure gaze in natural social contexts
(Chong et al., 2017). Consequently, researchers have explored non-contact eye
tracking using eye appearance from images (Lu et al., 2014) or mathematical eye
models (Li & Li, 2015), while analyzing psychological factors in eye movement
data. For example, Syeda et al. (2017) examined facial scanning patterns and
emotion recognition in autism patients (5-17 years) using a Tobii EyeX Con-
troller laptop eye tracker while viewing six basic emotions. They found that
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individuals with autism focused less on core facial features (eyes, nose, mouth),
impairing emotion perception. Chrysouli et al. (2018) used a two-stream CNN
model fusing optical flow between consecutive eye image frames and static spa-
tial information to recognize engagement, boredom, or frustration states from
gaze images in the MaTHiSiS dataset. For assessing eye contact during natu-
ral caregiver-child interaction, researchers increasingly use POV (point-of-view)
cameras worn by adults to record children’s gaze. Chong et al. (2017) developed
an end-to-end deep learning framework (Pose-Implicit CNN) to detect eye con-
tact during natural interaction using a dataset of 100 children with autism (3-6
years) and typically developing toddlers (18-36 months) comprising 156 interac-
tion segments (22 hours), achieving 0.78 precision and 0.80 recall, outperforming
other models (AlexNet, PEEC, GazeLocking).

Traditional eye movement data collection is impractical for large-scale screening
due to requirements for controlled laboratory environments and sustained screen
fixation unsuitable for young children. Non-invasive techniques using cameras
to record facial (especially eye) and head movements enable analysis of gaze
location and duration in natural social interactions. However, videos collected
in homes or clinics may contain occlusions and head position offsets requiring
preprocessing and correction.

3.4 Automatic Recognition Based on Brain Imaging Data

Precise autism diagnosis is critical for early intervention and treatment. In-
ternational research has extensively sought behavioral, genetic, and imaging
biomarkers for autism (Hong et al., 2020; Lord et al., 2020; Talbott & Miller,
2020; Wolfers et al., 2019), combining AT for objective diagnosis. However, most
studies target children and adults (Dickinson et al., 2021), with infant research
still nascent.

Brain imaging technology has advanced understanding of autism pathophysiol-
ogy, and its integration with Al offers new opportunities for early precision
diagnosis. The primary challenge in autism diagnosis is pathophysiological
heterogeneity, where brain imaging excels at capturing fine-grained structural
and functional information to identify subtype-specific features (Emerson et
al., 2017). Consequently, brain imaging-based objective diagnosis has attracted
substantial attention. Key imaging modalities include electroencephalography
(EEG), structural MRI (sMRI), and functional MRI (fMRI).

sMRI can detect subtle brain structural variations in infants, showing good per-
formance in early diagnosis. Hazlett et al. (2017) reported in Nature a study
using sMRI from 148 infants (6-12 months), extracting cortical thickness, sur-
face area, and brain volume features combined with deep learning to achieve 81%
sensitivity and 88% specificity. EEG’ s high temporal resolution enables pre-
cise characterization of abnormal spatiotemporal covariation patterns in infant
brain function. Gabard-Durnam et al. (2019) used longitudinal EEG data from
171 infants (3-36 months) with logistic regression to classify autism vs. typical
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development (diagnosed at 36 months), finding that EEG power dynamics in
the first postnatal year were most effective for early diagnosis (91% accuracy).
Dickinson et al. (2021) at UCLA used EEG data from 65 infants (3 months)
with support vector regression to predict autism behavior scores at 18 months,
achieving a correlation of 0.76 between predicted and actual values. fMRI of-
fers both high temporal resolution (vs. PET/SPECT) and spatial resolution
(vs. EEG), providing rich information on static and dynamic brain functional
activity and networks. Emerson et al. (2017) used resting-state fMRI from 59
infants (6 months), extracting functional connectivity features to build an SVM
classifier predicting autism diagnosis at 24 months, achieving 81.8% sensitivity
and 100% specificity.

While brain imaging holds promise for precise infant autism diagnosis, several
challenges remain: (1) infant data acquisition is more difficult than for older pop-
ulations; (2) successful implementation requires collaboration across medicine,
neuroimaging, and computer science; (3) current research is in its infancy, fo-
cusing primarily on distinguishing autism from typical development without
refined grading or subtyping. Given autism’ s high heterogeneity (Elsabbagh et
al., 2013), providing severity judgments and pathological subtype information
would greatly aid personalized treatment planning. (4) Most studies extract
relatively crude imaging features, not fully exploiting the rich information avail-
able. The brain’ s complexity means autism-related functional abnormalities
manifest as complex spatiotemporal patterns, yet research has relied on simple
features like static functional connectivity. Recent studies suggest naturalistic
fMRI is more suitable for infant brain research (Xie et al., 2021), and dynamic
network properties provide richer information than static connectivity (Eslami
et al., 2021). (5) Most studies use classical machine learning algorithms, un-
derutilizing superior deep learning models. Few studies employ deep learning,
though Xu et al. (2020) used fNIRS time-series data with an LSTM-CNN hybrid
model to classify autism vs. typical development (mean age ~9 years), achiev-
ing 97.1% sensitivity and 94.3% specificity—an 8% improvement over previous
models, demonstrating deep learning’ s potential.

3.5 Automatic Recognition Based on Motor Control and Movement
Pattern Data

Atypical motor control and movement patterns are early autism features. Landa
et al. (2006) found that infants later diagnosed with autism showed lower fine
and gross motor scores on the Mullen Scale of Early Learning at 14 and 24
months. Multiple studies report postural abnormalities, motor incoordination,
and weak motor control in prone, supine, crawling, and walking positions (Espos-
ito et al., 2009; Teitelbaum et al., 1998). These findings support using atypical
motor patterns for early autism identification. Traditional motor function eval-
uation relies on parent reports and expert observation, with coding methods
and standards specific to particular research contexts lacking validated norms
(Ozonoft et al., 2008).
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Current research primarily builds automated detection methods from move-
ment videos. Dawson et al. (2018) used video-based facial detection to assess
head postural control during spontaneous attention in toddlers with autism
vs. typical development. They recorded facial videos of 106 toddlers (16-31
months) watching dynamic bubbles and mechanical rabbit videos, quantifying
head movement by tracking displacement of facial landmarks across frames. Re-
sults showed significantly higher head movement velocity in autism, indicat-
ing difficulty maintaining midline head position during attention. Martin et
al. (2018) used the same paradigm with 2.5-6.5-year-olds, employing the Zface
algorithm (http://zface.org/) (Jeni et al., 2015) for real-time dense 3D facial
shape reconstruction from 2D video frames, enabling 3D head tracking (pitch,
yaw, roll). By computing angular displacement and velocity across axes, they
found children with autism showed higher head movement levels and speeds
when viewing social stimuli, suggesting they modulate social perception through
head movement.

Studies have also built classification models from movement features in video
sequences. Zunino et al. (2018) examined grasping behavior in children with
autism (mean age ~9.8 years), analyzing video action sequences (average 83
frames) of grasping, placing, and passing water bottles. Using CNN-LSTM
models, they classified autism while generating normalized attention maps from
LSTM hidden states to visualize discriminative regions, providing interpretable
support for clinicians. Vyas et al. (2019) used data from the NODA remote diag-
nostic service (https://behaviorimaging.com/), comprising 555 parent-recorded
daily activity videos with expert diagnoses. They used pretrained Mask R-CNN
for 15-keypoint pose estimation, applied particle filters for missing keypoint in-
terpolation (Arulampalam et al., 2002), and represented body keypoint trajec-
tories as RGB heatmaps (PoTion Representation) (Choutas et al., 2018) for
CNN classification, achieving 72.4% accuracy, 72% precision, and 92% recall.
This approach used interpretable shallow behavioral information and visualiz-
able heatmaps to aid understanding of movement characteristics.

Advances in hardware have integrated inertial motion sensors, gyroscopes, and
magnetometers into smartphones, tablets, and wearables for movement data
collection. Anzulewicz et al. (2016) explored autism detection during serious
gameplay, recruiting 37 children with autism (3-6 years) and 45 typically devel-
oping children. Hand movement data were recorded via touchscreen and built-in
inertial sensors (3-axis accelerometer, gyroscope, magnetometer) during tablet
gameplay. Using 262 features extracted from raw sensor data, they built ma-
chine learning classifiers, with Regularized Greedy Forest achieving 83% sensi-
tivity and 85% specificity. They found significant differences in hand impact
force, gesture pressure, force distribution, and tap rate between groups.

Automated detection of various atypical movement patterns has progressed sub-
stantially, covering gross postural/limb movements to fine head/hand move-
ments, including overall body posture changes, hand movements (grasping, plac-
ing, passing), and attention-related head movements (velocity, stability). As
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smart sensor technology evolves, researchers can use wearables and motion-
sensing devices to automatically identify atypical movements in young children,
advancing research on early motor development in autism.

3.6 Automatic Recognition Based on Multimodal Data

The psychological, physiological, and cognitive states of children with autism
are reflected across multiple dimensions: facial expressions, body posture, eye
gaze, speech, text, and physiological signals. Due to measurement environment
heterogeneity and scarce clinical samples, single-modality data often lacks suffi-
cient information for accurate identification (Chen & Zhao, 2019). The current
trend is multimodal data fusion, integrating correlated features or intermediate
decisions across modalities to obtain more valuable data and higher-level infor-
mation, improving prediction accuracy beyond single-modality modeling (Poria
et al., 2017; de Belen et al., 2020).

For example, Chen and Zhao (2019) used photo-taking and image-viewing tasks
to build autism recognition models based on atypical attention preferences. Bor-
rowing cross-modal retrieval concepts, they fused eye movement and image data
modalities to create a shared predictive model enabling feature representation
and information complementarity. Multimodal modeling improved prediction
performance from 76% to 84% for photo-taking and from 97% to 99% for image-
viewing tasks. Liao et al. (2021) developed an intelligent recognition method
for 3-6-year-olds with autism using eye movement, facial expression, cognitive
scores, and reaction time data, performing feature selection through differential
analysis and hierarchical fusion based on data source and temporal synchroniza-
tion. Multimodal modeling showed highest consistency with Autism Behavior
Checklist assessments compared to single-modality methods.

Other research uses multimodal behavioral features from child-robot interac-
tions for autism diagnosis and intervention evaluation. Scassellati (2007) defined
behavioral indicators reflecting social skills in human-robot interaction data to
improve reliability of manual recording and assessment, including: (1) gaze di-
rection and attention focus; (2) interpersonal distance and position tracking;
(3) voice prosody and intonation. Researchers have evaluated engagement and
participation in children with autism (mean age 3.4 years) interacting with so-
cial robots using multimodal indicators like facial orientation, relative position,
and physical distance (Feil-Seifer & Matarié¢, 2010; Moghadas & Moradi, 2018).
Online platforms now monitor social skills in autism patients using non-invasive
sensors and wearables to collect multimodal daily interaction data (physical
distance, posture, upper body movement, micro-expressions) as sociometer met-
rics, transmitting data to cloud platforms (e.g., Microsoft Azure) for storage,
analysis, and visualization to guide targeted intervention design (Winoto et al.,
2016).

Several publicly available multimodal datasets for autism research have been
established. The Multimodal Dyadic Behavior Dataset (MMDB) contains 160+
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interaction segments (3-5 minutes each) of 121 infants (15-30 months) with
adult experimenters, with existing behavioral coding frameworks and manual
annotations for key behaviors (attention, eye contact, social smiling, vocaliza-
tions, communicative gestures) following autism coding manuals (Rehg et al.,
2013). The DE-ENIGMA dataset includes 128 children with autism in long-
duration interactions with therapists/robots (13 TB), with expert annotations
of valence, arousal, and posture for 50 children, enabling model training.

Most studies currently build detection models on independently collected clini-
cal data without comparative evaluation of similar methods on identical tasks,
resulting in isolated findings. Public datasets are needed as benchmarks for
model performance evaluation. Increasingly available public datasets provide
the scale required for machine/deep learning development, allowing researchers
to pretrain models or enhance performance with different modalities to improve
generalization.

4. Summary and Research Outlook

China’ s large population includes a substantial and growing number of indi-
viduals with autism. The diagnostic process is time-consuming and expensive,
requiring long-term special education and behavioral intervention. Earlier de-
tection and intervention during infancy produce better rehabilitation outcomes,
with the optimal treatment window before age 3; difficulty increases with age.
However, China’ s autism screening and diagnosis faces a “three lacks” situ-
ation: lack of diagnostic standards, professional personnel, and rehabilitation
pathways. The intervention system is incomplete, overall quality is low, and
treatment effectiveness is limited. Diagnosis relies primarily on clinical experi-
ence, lacking convenient and objective tools, resulting in lengthy delays from
parental concern to confirmed diagnosis and causing many children to miss the
optimal intervention window. Additionally, intervention methods are mostly
designed for children over 3 years, with unclear efficacy and limited techniques,
partly due to diagnostic delays and the challenges of intervening with infants
whose behavioral and language skills are still developing.

Therefore, innovating diagnostic workflows and rehabilitation pathways to es-
tablish an intelligent-assisted early screening, diagnosis, and treatment system
is necessary to reduce time pressure and labor costs. For families, earlier de-
tection and intervention improve prognosis, promoting developmental progress,
improving language, and reducing problem behaviors (Chen et al., 2011), cre-
ating lasting benefits and minimizing economic and emotional burdens. Recent
technologies—computer vision, speech processing, smart wearables, and brain
imaging—enable multi-modal, multi-scenario data collection. Modeling natural-
istic audio-video data of infants interacting with caregivers can more authenti-
cally capture behavior-symptom relationships and detect subtle expression or
movement changes unobservable manually. This paper identifies two major chal-
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lenges and future research directions for establishing an intelligent, non-intrusive
screening and diagnostic system for infant autism.

4.1 Lack of Effective Screening Tools for Infants and Toddlers

Despite progress in early autism screening and diagnosis, significant shortcom-
ings remain, including difficulty with early screening, limited &, and imprecise
assessment. Three specific issues stand out:

First, there is a lack of refined behavioral diagnostic systems for infant autism.
Existing tools span large age ranges (typically $ $6 months) with inconsistent
items across developmental stages. Autism assessment requires age-appropriate,
environmentally contextualized tasks, yet rapid development during infancy
means substantial differences emerge within just 3 months. Using the same
tool across a 6-month span with uniform content and standards compromises
accuracy, creating unstable sensitivity and specificity across ages (Nah et al.,
2019). Precise early identification requires clear descriptions of behavioral char-
acteristics and developmental trajectories. While studies often track features
at 3-month intervals (Kaur et al., 2018), they do not comprehensively cover
the critical early identification period (6-36 months), and long-term studies of-
ten use larger, uneven intervals (6-12 months). Moreover, research typically
focuses on limited typical behaviors (e.g., object sharing, social smiling) rather
than comprehensively covering all manifestations. Consequently, systematic,
fine-grained research on infants with autism across both temporal and content
dimensions is lacking, as are targeted identification systems.

Second, assessment tools inadequately evaluate emotional and affective capac-
ities. Most screening instruments cover social interaction, language/cognitive
development, and repetitive behaviors, with varying emphases by age. Some fo-
cus only on partial core symptoms (e.g., CHAT on joint attention and pretend
play) (You & Yang, 2006). Even the gold-standard ADOS lacks assessment
indicators for emotional/affective development. Yet infants with autism often
show emotional/affective developmental deficits, including emotional blunting
and difficulties in understanding/expressing emotions, considered core social
deficits. Current social observation focuses only on the presence of interaction,
not emotional development indicators (de Bildt et al., 2015). Emotion and af-
fect are foundational to socio-emotional development; recognizing these features
is crucial for targeted interventions and robust developmental pathways.

Third, existing screening and diagnostic methods lack innovation and integra-
tion. Diagnosis relies on medical history analysis, symptom inquiry, behavioral
observation, and rating scales, supplemented by limited neuroimaging and ge-
netic testing. This approach lacks detailed, unified standards and has inherent
limitations. Semi-structured caregiver reports lack child participation and are
subject to parental bias and misunderstanding, potentially over- or underesti-
mating abilities (Johnson & Myers, 2007). Complex observational procedures
require qualified professionals (Matson et al., 2011; Romero-Garcia et al., 2019).
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While ADOS is the international gold standard, China has a severe shortage of
trained professionals. Clinical observations are subjective, influenced by experi-
ence and training (Romero-Garcia et al., 2019), and brief doctor-child interac-
tions cannot comprehensively evaluate multi-contextual behaviors (Fitzgerald,
2017; Zabihi et al., 2020). Complete diagnostic processes average 41 months
and substantial costs, with coarse rating scales (Hyman et al., 2020), hindering
early diagnosis and risking misdiagnosis due to non-standardized criteria.

In summary, traditional methods are constrained by time, personnel, and devel-
opmental considerations. There is a critical need for more detailed research on
existing tools and professional standards to comprehensively construct behav-
ioral feature systems providing precise identification criteria across ages. Devel-
oping intelligent tools to assist or replace clinicians for rapid screening in homes
or community clinics while reducing subjective errors would have significant
clinical value.

4.2 Lack of Intelligent Recognition Research Integrating Multimodal
Data

Current intelligent autism recognition primarily targets individuals over 3 years
old, with less use of clinical diagnostic and naturalistic behavioral data compared
to laboratory data. Challenges vary across the six subdomains: facial expression
recognition has largely used deep learning (CNN, DCNN) for emotion classifi-
cation in photos/video frames (Li et al., 2019; Shukla et al., 2017), but most
classifiers were developed for adults and generalize poorly to infants (Kalan-
tarian et al., 2019). They only classify basic emotions qualitatively (happy,
disgusted, angry) without assessing emotional complexity or atypicality levels
(Guha et al., 2016). Eye movement research has accumulated rich evidence of
gaze pattern differences and effective feature extraction methods (Liu et al.,
2016; Liu et al., 2015), but data are mostly from controlled laboratory settings
requiring sustained screen fixation, impractical for large-scale screening or nat-
uralistic social interaction assessment. Motor pattern recognition has identified
simple fixed movements like head motion in RTN tasks (Dawson et al., 2018)
and grasping (Martin et al., 2018), but not complex task movements. Most
studies use single-modality data, underutilizing multimodal information.

The trend is to obtain rich multimodal data from infants with autism, fusing
facial expressions, body posture, eye gaze, speech, lip movements, and physio-
logical signals. Exploring complementary relationships, feature transformation,
and representation patterns across modalities through fusion can revolutionize
screening methods and achieve diagnostic breakthroughs. International multi-
modal studies on other psychiatric disorders (e.g., Alzheimer’ s, schizophrenia)
have shown higher accuracy than single-modality approaches. However, most
autism multimodal research focuses on children over 6 years, leaving a gap for
infants. Available multimodal data are limited to controlled experiments, pub-
lic datasets, or online videos, mostly from single-task or therapeutic contexts,
with unknown applicability to large-scale infant screening. Many models predict
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coarse behavioral labels (simple checklist items or basic emotions) with limited
clinical utility.

Building multimodal datasets is fundamental for intelligent recognition. Future
research must address efficient, convenient multimodal data acquisition, noise
reduction, and effective identification. While foreign public datasets have limita-
tions (lack of infant data, single modalities, coarse labels), they have accelerated
algorithm development. China’ s large and growing infant autism population
has dispersed case data. To build an intelligent early screening/diagnostic sys-
tem, China must first clarify early diagnostic standards, construct a domes-
tic abnormal behavior indicator system, obtain multimodal data from multiple
sources, and create fine- and coarse-grained behavior annotations. Establishing
large-scale autism and high-risk infant databases and behavioral feature repos-
itories is essential for high-quality intelligent recognition research. While large
datasets are being built, researchers can employ few-shot learning techniques
(fine-tuning, data augmentation, transfer learning) to address the contradiction
between model training data demands and scarce infant samples.
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