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Abstract
In large-scale structural health monitoring systems, temperature sensor failures
can pose safety hazards. Based on the active reflector health monitoring system
of the FAST project, we extracted and analyzed the linear correlations among
data from nine measurement points, grouped candidate variables and selected
the optimal regression subset, established a multiple linear regression model,
and fused data from normal sensors to estimate faulty measurement points. To
address multicollinearity among variables, ridge regression was further applied
with the ridge parameter selected as 6. The model’s significance and validity
were tested using F-test and goodness-of-fit test, and the estimation accuracy
was verified using data from different dates. Results demonstrate that the mul-
tiple linear regression model achieves higher goodness-of-fit and accuracy than
univariate approaches, with a root mean square error of 0.475°C, while the ridge
regression method exhibits higher stability with a root mean square error of only
0.435°C.
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Abstract: Temperature measurement point failures in large-scale structural
health monitoring systems can create safety hazards. Based on the FAST project
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active reflector health monitoring system, this study extracts and analyzes the
linear correlations among data from nine measurement points. Candidate vari-
ables are grouped and the optimal regression subset is selected to establish a
multiple linear regression model that fuses normal measurement point data to
estimate faulty points. To address multicollinearity among variables, ridge re-
gression is further applied with the ridge parameter selected as 6. The F-test
and goodness-of-fit test verify model significance and validity, while data from
different days validate estimation accuracy. Results demonstrate that the mul-
tiple linear regression model achieves higher fitting degree and precision than
univariate models, with a root mean square error (RMSE) of 0.475°C. The ridge
regression method provides greater stability, with an RMSE of only 0.435°C.

Keywords: Five-hundred-meter Aperture Spherical Telescope (FAST); tem-
perature sensor; structural health monitoring; multiple linear regression; ridge
regression

0 Introduction
Structural health monitoring is a technology that evaluates the current state of
structures by deploying numerous sensors, with widespread applications in en-
gineering safety monitoring. The Five-hundred-meter Aperture Spherical Tele-
scope (FAST) is a large steel-structure project with an active reflector [?]. Liter-
ature [?] discusses the complexity of structural forces in FAST. Due to its special
structure, large spatial span, and numerous components, the active reflector un-
dergoes controlled deformation during observation, resulting in complex struc-
tural forces. To ensure safe operation, an active reflector health monitoring
system has been constructed to assess the health status of FAST by monitoring
stress and environmental information at key structural locations.

Literature [?] indicates that during cable net construction, the monitored real-
time stress in the ring beam reached approximately 60 MPa, consistently below
the design safety value of 201.5 MPa, remaining within safe limits, while empha-
sizing the importance of temperature signals for stress analysis. During FAST
operation, active deformation of the cable net makes structural forces even more
complex. Taking July 2019 monitoring data as an example, the maximum stress
value at all ring beam lattice column measurement points was 137.37 MPa, with
a minimum of -135.88 MPa, still within safe ranges. However, some measure-
ment points exhibited large stress variations, with the largest range reaching
167.17 MPa at a single point. Stress monitoring remains crucial for real-time
health assessment and long-term fatigue damage evaluation in subsequent tele-
scope operations.

Large-scale engineering structures have substantial spatial dimensions, with dif-
ferent temperature rises across various locations. Temperature differences and
thermal effects cause significant structural stress changes. Literature [?] notes
that in FAST structures, temperature loads control the stiffness of the ring beam,
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making distributed temperature measurement points critical for structural state
assessment [?]. FAST employs 416 Fiber Bragg Grating (FBG) strain sensors
[?] to monitor stress, including 100 measurement points on the ring beam and
lattice columns and 316 on main cables. Although measurement points are
distributed differently, all require temperature compensation for strain sensors
based on actual temperatures at each point. Literature [?] further discusses the
necessity of separating temperature effects from structural stress for state as-
sessment, as missing temperature information directly compromises strain mea-
surement reliability.

Actual engineering environments are complex, and numerous sensors operat-
ing long-term experience certain failure rates. Maintenance has revealed that
individual FBG demodulators in FAST’s active reflector health monitoring sys-
tem have malfunctioned, with several sensors producing abnormal data. The
proportion of confirmed abnormal measurement points is approximately 5%,
preventing normal acquisition of some monitoring data. However, due to site
constraints and special installation locations, faulty sensors often cannot be re-
paired immediately. Data loss degrades health monitoring system performance
and creates safety hazards.

Using adjacent measurement points to replace faulty temperature information
presents challenges. For FBG sensors, which are often deployed in series, dam-
age to a data channel can disable an entire group of adjacent sensors. Using
distant sensor values is problematic due to large distances, varying solar expo-
sure, and significant temperature differences, which is precisely why tempera-
ture sensors are deployed at each point. Accurate estimation of temperature
signals at faulty measurement points is therefore essential for improving health
monitoring system reliability.

1 Sensor Deployment and Data Extraction Analysis
The FAST active reflector health monitoring system uses FBG temperature
sensors to monitor temperature information at key strain measurement points
on the ring beam lattice columns. The sensor principle relies on temperature-
induced changes in grating period and effective refractive index, causing reflected
wavelength shifts. Temperature is obtained by measuring the center wavelength
variation.

To effectively investigate correlations among temperature measurement points
deployed over long distances, temperature data from corresponding measure-
ment points on FAST’s edge ring beam support lattice columns were extracted.
Each monitored lattice column provides one measurement point. FAST has 50
ring beam lattice columns total, with 10 equipped with measurement points.
The numbers and distribution of monitored lattice columns are shown in Figure
1, with sensors installed in the green horizontal tie rods on the inner side of
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ring beam supports as illustrated in Figure 2. The maximum distance between
measurement points is 500 m.

The monitoring system samples data at 1 Hz. To reduce data volume, filter
high-frequency interference, and avoid analysis difficulties from non-uniform
data lengths, raw data are averaged using a 10-minute window. The average
temperature value for each 10-minute period serves as the temperature data for
that moment, yielding 144 samples per measurement point per day. July 2019
monitoring data were extracted, with the measurement point at lattice column
#31 having no data due to acquisition channel maintenance, resulting in nine
measurement points total. Since environmental temperature cycles typically
follow diurnal patterns, data were grouped by day. Data for July 16 are shown
in Figure 3.

Figure 3 shows significant temperature differences between measurement
points, with maximum differences exceeding 5°C and varying fluctuation
patterns, though overall trends are consistent. Two data samples are denoted
as 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑛] and 𝑌 = [𝑦1, 𝑦2, ..., 𝑦𝑛]. Linear correlation between
different samples is calculated using the correlation coefficient formula:

𝑟 = ∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)

√∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2 ∑𝑛

𝑖=1(𝑦𝑖 − ̄𝑦)2

where 𝑛 is sample length and ̄𝑥, ̄𝑦 are respective means. The resulting correlation
coefficient matrix for different measurement point temperature data is shown
in Table 1, revealing high linear correlation between points, with the lowest
correlation coefficient being 0.959.

2.1 Model Introduction
When variables are highly linearly correlated, linear regression methods are
commonly used for modeling. With one independent variable denoted as 𝑥 and
dependent variable as 𝑦, the general model is:

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀

where 𝛽0, 𝛽1 are model coefficients and 𝜀 is random error. In health monitor-
ing temperature estimation applications, univariate regression suffers from poor
prediction accuracy at certain times due to non-uniform solar exposure [?].

Introducing more variables and integrating temperature effects from different
measurement points yields better prediction results. With multiple independent
variables, this is called multiple linear regression [?], with the model:
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𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ... + 𝛽𝑝𝑥𝑝 + 𝜀

where 𝛽0, 𝛽1, ..., 𝛽𝑝 are coefficients and 𝑝 is the number of variables. With 𝑛
data groups, the model can be simplified to matrix form:

𝑌 = 𝑋𝐵 + 𝐸

where 𝑌 is the dependent variable vector, 𝑋 is the independent variable matrix,
𝐵 is the coefficient vector, and 𝐸 is the random error vector. Random error
terms follow a normal distribution 𝜀𝑖 ∼ 𝑁(0, 𝜎2) for 𝑖 = 1, 2, ..., 𝑛. Neglecting
error terms, least squares method solves for model coefficients:

𝐵̂ = (𝑋𝑇 𝑋)−1𝑋𝑇 𝑌

Using the estimated coefficients ̂𝛽0, ̂𝛽1, ..., ̂𝛽𝑝, the empirical regression equation
is established:

̂𝑦 = ̂𝛽0 + ̂𝛽1𝑥1 + ̂𝛽2𝑥2 + ... + ̂𝛽𝑝𝑥𝑝

where 𝑥1, 𝑥2, ..., 𝑥𝑝 are independent variable inputs and ̂𝑦 is the model output
estimate.

For the extracted nine measurement point datasets, taking one point as the
dependent variable (the point to be estimated) and the remainder as indepen-
dent variable inputs allows training a multiple linear regression model. When
data from the estimated point are missing, its signal can be estimated using the
independent variable inputs.

2.2 Optimal Independent Variable Selection
Using lattice column #1 measurement point as the dependent variable (point
to be estimated) and the remaining eight measurement points’temperature
information as candidate variables, there are 28 − 1 = 255 possible variable
subset combinations. Using July 16 data to train the model, variables are sorted
by correlation in descending order and added incrementally, divided into eight
groups.

The 𝐶𝑝 statistic and adjusted coefficient of determination 𝑅2
𝑎 are combined as

selection criteria to determine the optimal variable subset:

𝐶𝑝 = 𝑅𝑆𝑆𝑝
𝑅𝑆𝑆𝑚/(𝑛 − 𝑚) − (𝑛 − 2𝑝)
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where 𝑛 = 144 is sample length, 𝑚 = 8 is the total number of candidate variables,
𝑝 is the number of selected variables, 𝑅𝑆𝑆𝑚 is the residual sum of squares for
modeling with all variables, and 𝑅𝑆𝑆𝑝 is the model residual sum of squares.

𝑅2
𝑎 = 1 − 𝑛 − 1

𝑛 − 𝑝 − 1(1 − 𝑅2)

where 𝑅2 is the coefficient of determination (model goodness-of-fit):

𝑅2 = 1 − 𝑅𝑆𝑆
𝑇 𝑆𝑆

where 𝑇 𝑆𝑆 is the total sum of squares for dependent variable 𝑦 = [𝑦1, 𝑦2, ..., 𝑦𝑛]:

𝑅𝑆𝑆 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2, 𝑇 𝑆𝑆 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̄𝑦)2

where 𝑦𝑖 are actual values, ̂𝑦𝑖 are model predictions, and ̄𝑦 is the mean of actual
values.

Variable grouping and corresponding model 𝐶𝑝 and 𝑅2
𝑎 values are shown in Table

2. The optimal variable subset is selected by minimizing 𝐶𝑝 and maximizing
𝑅2

𝑎, revealing that using all eight variables yields the best model fit.

3 Multicollinearity Problem and Ridge Regression Model
Table 1 shows extremely strong correlations between all measurement point
pairs. For multiple linear regression models, such multicollinearity causes model
stability issues. There may exist a set of numbers 𝑘0, 𝑘1, ..., 𝑘𝑝, not all zero, such
that:

𝑘0 + 𝑘1𝑥𝑖1 + 𝑘2𝑥𝑖2 + ... + 𝑘𝑝𝑥𝑖𝑝 ≈ 0 (𝑖 = 1, 2, ..., 𝑛)

At this point, the design matrix rank 𝑟𝑎𝑛𝑘(𝑋) < 𝑝 + 1, meaning |𝑋𝑇 𝑋| ≈ 0
in formula (7). The coefficient vector estimate matrix 𝐵̂ has variance matrix
𝐷(𝐵̂) = 𝜎2(𝑋𝑇 𝑋)−1, whose diagonal elements become excessively large, reduc-
ing estimation precision for coefficient vector 𝐵. The model becomes overly
sensitive to small input data changes, increasing prediction uncertainty and
reducing model stability and accuracy.

Ridge regression optimizes the multicollinearity problem in multiple linear re-
gression models [?]. The ridge estimate of the coefficient vector is defined as:
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𝐵̂(𝜆) = (𝑋𝑇 𝑋 + 𝜆𝐼)−1𝑋𝑇 𝑌

where 𝜆 > 0 is called the ridge parameter. Adding a positive constant matrix 𝐼
makes 𝑋𝑇 𝑋 + 𝜆𝐼 full-rank and invertible, reducing near-singularity compared
to the original matrix.

The 𝐿2 norm penalty term increases with 𝜆, reducing model variance, but the
coefficient estimate 𝐵̂(𝜆) deviates from the original value, increasing model bias.
When 𝜆 = 0, the model reduces to ordinary multiple linear regression. Therefore,
ridge parameter selection requires careful consideration.

Applying the ridge trace method, the ridge traces for eight independent variable
regression coefficients are plotted in Figure 4. Following the principle of selecting
the smallest 𝜆 value that stabilizes all coefficient vectors, 𝜆 = 6 is determined.
Figure 4 shows that variables 𝑇26 and 𝑇6 coefficients approach zero, indicating
that ridge regression performs variable selection during training.

4.1 Testing and Evaluation Metrics
After establishing the multiple linear regression model, reliability must be as-
sessed. The F-test determines regression equation significance, with the statis-
tic:

𝐹 = 𝐸𝑆𝑆/𝑝
𝑅𝑆𝑆/(𝑛 − 𝑝 − 1)

where 𝑅𝑆𝑆 is model residual sum of squares, 𝐸𝑆𝑆 is regression sum of squares,
𝑛 = 144 is sample length, and 𝑝 = 8 is the number of selected variables:

𝐸𝑆𝑆 =
𝑛

∑
𝑖=1

( ̂𝑦𝑖 − ̄𝑦)2

where ̂𝑦𝑖 are model predictions and ̄𝑦 is the mean of actual values.

Model goodness-of-fit 𝑅2 is tested using formula (11), with values closer to 1
indicating better fit. Using 𝑇1 data as the point to be estimated and other
measurement points as input variables, models are trained using July 16 data
and tested on July 17 and 18 data. Estimation performance is evaluated using
root mean square error (RMSE), where smaller values indicate better prediction:

𝑅𝑀𝑆𝐸 = √ 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2
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4.2 Test Results
Corresponding to the aforementioned groups, univariate through eight-variable
linear regression models and ridge regression models were established and eval-
uated. Test and model estimation results are shown in Table 3. The lowest
F-test statistic is 4972.29, far exceeding the critical value 𝐹𝛼(1, 135) = 3.911,
so all models pass significance tests. Goodness-of-fit values are all above 0.99,
meeting requirements. As the number of fused variables increases, model testing
RMSE decreases correspondingly.

Table 3 shows that the univariate, eight-variable linear regression, and ridge
regression models all track the true values closely, with prediction curves nearly
overlapping actual values. All models estimate signals effectively, with ridge
regression achieving higher precision.

Temperature monitoring data from nine measurement points spanning 500 m
in FAST’s active reflector health monitoring system were extracted. Analy-
sis revealed extremely strong linear correlations between point pairs. Using
measurement point #1 as the point to be estimated, methods for fusing data
from other points were investigated, and model estimation performance was
compared across different variable sets.

Multiple linear regression demonstrates superior performance over univariate
models in both fitting degree and practical estimation applications. When input
variables increase to three, testing RMSE falls below 0.5°C. Compared with
original multiple linear regression, ridge regression slightly reduces model fitting
degree but effectively avoids multicollinearity issues. Testing on July 17 and 18
data shows ridge regression achieves better prediction accuracy than multiple
regression, with stronger anti-interference capability and stability. The average
RMSE over two days is only 0.435°C.

These results indicate that when a measurement point fails, ridge regression can
be used to train and establish a multiple linear regression model using recent
historical data. Normal measurement point temperature information serves as
input to estimate output values for faulty points. This method achieves high
precision and can supplement missing node temperature information in health
monitoring systems, maintaining normal operation during sensor repair periods.
However, this approach uses recent data for fitting and prediction, serving only
as a short-term replacement solution after point failure. If a point remains
faulty for extended periods with significant time differences in available data,
estimation accuracy will decrease due to variations in solar exposure and weather
conditions causing changes in equipment temperature field patterns. Long-term
data missing estimation methods require further research.
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Figure 1: Figure 4
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