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Abstract
The volume of candidate diagnostic images generated by FAST pulsar searches
is increasing exponentially, posing significant challenges to scientific data man-
agement and necessitating urgent research into compression methods to enable
efficient storage and accelerated network transmission and sharing of these di-
agnostic images. Pulsar diagnostic images comprise sparse black-and-white im-
ages, randomly distributed grayscale images, and color images; thus, treating
them uniformly as color images and applying a single compression method is
evidently inappropriate. This study proposes a partitioned compression scheme
for pulsar candidate diagnostic images utilizing White Block Skipping (WBS)
coding and deep network compression coding models. The proposed method
is trained and validated using pulsar candidate diagnostic images from recent
FAST sky survey search projects. Experimental results demonstrate that the
improved WBS compression achieves performance five times superior to PNG
for sparse black-and-white images; the deep network compression algorithm ex-
hibits PSNR performance superior to JPEG and JPEG2000, comparable to
BPG, for grayscale and color images, while its SSIM performance substantially
surpasses traditional compression algorithms.
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Abstract

The volume of candidate diagnostic images generated by FAST pulsar searches
has grown exponentially, posing significant challenges for scientific data man-
agement. Effective compression methods are urgently needed to enable efficient
storage and accelerate network transmission and sharing of these diagnostic
images. Pulsar diagnostic images comprise sparse binary images, randomly dis-
tributed grayscale images, and color images, making it unreasonable to treat
them uniformly as color images and compress them with a single method. This
paper proposes a partitioned compression approach combining white block skip-
ping (WBS) coding with deep neural network compression models. Using pulsar
candidate diagnostic images from recent FAST sky survey projects for training
and validation, our results demonstrate that the improved WBS compression
achieves five times better performance than PNG for sparse binary images. For
grayscale and color images, the deep network compression algorithm exhibits
superior PSNR performance compared to JPEG and JPEG2000, comparable to
BPG, and far exceeds traditional compression algorithms in SSIM performance.

Keywords: Pulsar candidate diagnostic image compression; Deep network
compression model; White block skipping coding; Five-hundred-meter Aperture
Spherical radio Telescope (FAST)

1 Introduction

Since the completion of the Five-hundred-meter Aperture Spherical radio Tele-
scope (FAST) in Guizhou, China in September 2016, pulsar search has been one
of its key scientific programs. To date, the FAST Early Science Data Center has
computationally identified 240 new pulsar candidates, with 123 confirmed as new
pulsars. Notable discoveries include J1859-0131 and J1931-01, the first pulsars
discovered by Chinese radio telescopes, and J0318+0253, the first millisecond
pulsar found by FAST and one of the faintest radio-loud high-energy millisecond
pulsars discovered to date. These achievements demonstrate FAST’s potential
to make substantial contributions to international low-frequency gravitational
wave detection.

Sky survey observation data undergo computational processing to generate mas-
sive quantities of pulsar candidate diagnostic images. For example, processing
2,000 data files daily produces 300,000 images requiring 20 GB of storage space.
This exponential growth in diagnostic image volume presents formidable chal-
lenges for scientific data management. These diagnostic images constitute crit-
ical scientific data for astronomers to inspect survey data and identify pulsars,
serving as the foundation for exploring new search techniques and representing
important resources for astronomical research, education, and open sharing. In
daily operations, pulsar identification software continuously transmits these im-
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ages over dedicated networks; scientists explore new research methods based on
them, such as the PICS method proposed by Zhu et al.; and the FAST cloud
platform publishes extensive shared information containing numerous pulsar
candidate diagnostic images. Consequently, research on compression technolo-
gies to enable effective storage and accelerate network transmission sharing is
urgently necessary.

Traditional mainstream image compression standards such as JPEG, JPEG2000,
and BPG employ transform coding. JPEG applies block-based DCT trans-
formation, converting image information from the spatial domain to the DCT
domain where coefficient energy is relatively concentrated, followed by quantiza-
tion and entropy coding. JPEG2000 utilizes discrete wavelet transform (DWT)
with hierarchical entropy coding. However, DCT and DWT are fixed linear
transform functions—essentially convolution operations with handcrafted convo-
lution kernels—which may not be optimal for decorrelating pulsar image data.
In recent years, neural network-based image compression methods have gained
increasing attention from researchers. Toderici et al. proposed an RNN-based
image coding framework, while Balle et al. introduced a convolutional neural
network-based compression architecture that learns an entropy model for the
distribution of bottleneck layer representations, better removing internal image
redundancy. Neural network-based image compression leverages large image
datasets for optimization, proving more effective than handcrafted compression
modules for decorrelation and compact transformation. However, existing com-
pression methods target natural images without fully considering the distinct
characteristics of pulsar diagnostic images. Since pulsar diagnostic images con-
sist of sparse binary images, randomly distributed grayscale images, and color
images, treating them uniformly with a single transform compression algorithm
is clearly unreasonable.

To address these characteristics, we propose a compression method combining
white block skipping coding with deep network image compression models. For
binary images containing curves and text in diagnostic images, we first binarize
the image and then apply an improved adaptive hierarchical block-skipping al-
gorithm. For the deep neural network compression model design, we employ
a convolutional neural network autoencoder structure comprising a forward en-
coding network, quantizer, entropy coder, and inverse decoding network. Using
the weighted sum of quantization feature coding rate and distortion error as the
loss function, we adaptively learn each module function from large quantities of
pulsar candidate diagnostic images via SGD optimization. To enable effective
arithmetic coding, we use a network-learned nonlinear function to approximate
the actual data distribution model of the latent representation features. Ex-
perimental results using pulsar candidate diagnostic images from recent FAST
sky survey projects demonstrate that our deep network compression algorithm
(DNCM) achieves PSNR values superior to JPEG and comparable to JPEG2000,
while SSIM values far exceed traditional compression algorithms. Particularly
at low bit rates, the high SSIM values of reconstructed images ensure superior
visual quality, proving the effectiveness of our algorithm for pulsar candidate

chinarxiv.org/items/chinaxiv-202201.00046 Machine Translation

https://chinarxiv.org/items/chinaxiv-202201.00046


diagnostic image compression.

2 Partitioned Image Compression

Pulsar candidate diagnostic images are generated by processing observation data
through dedispersion and period folding to obtain possible pulsar rotation pa-
rameter combinations and statistical distribution results, which are then plotted
for astronomers to determine whether they represent actual pulsars (Figure 1).
These diagnostic images primarily contain eight sub-images that can be roughly
categorized into three types: sub-images 2 and 3 are two-dimensional grayscale
scatter plots containing numerous random noise points; sub-images 1, 4, 5, 6,
and 7 are sparse curve plots or text-based binary images; and sub-image 8 is a
color image. Visual inspection reveals significant differences among these sub-
images, including varying numbers of channels and substantial differences in
data sparsity, making it unreasonable to use a single compression algorithm
or model. This paper partitions the image region into three categories, ap-
plying different compression methods: white block skipping coding for binary
image regions, and separate deep network latent variable compression models
for grayscale and color images. The three image regions are automatically lo-
cated, segmented, and distributed to corresponding encoders for compression
processing.

2.1 White Block Skipping Coding Method White block skipping coding
is a run-length coding variant that exploits the characteristic that monochrome
regions occupy most positions in binary images. One-dimensional white block
skipping coding divides each scan line of a binary image into blocks of N pixels.
Blocks of all-white pixels are represented by a 1-bit word “0,”while blocks
containing at least one black pixel are represented by N+1-bit codewords: the
first bit“1”serves as a prefix code, and the remaining N bits directly represent
the binary amplitude values (white as “0,”black as “1”). Extended to two
dimensions, the entire image is segmented into M×N pixel blocks. All-white
blocks are represented by 1-bit“0,”while non-all-white blocks use M×N+1-bit
codewords with a prefix bit “1”followed by M×N bits representing the binary
amplitude values. For pulsar candidate images, Type 1 regions are segmented
and transformed into binary images using a specified threshold, with white pixels
represented as “0”and black pixels as “1.”

As shown in Figure 2, white block skipping coding generates a binary data
stream from the binary image, which is then fed into an adaptive arithmetic
coder (QM coder) to further compress bitstream redundancy. This paper em-
ploys an improved adaptive hierarchical block-skipping algorithm for white block
skipping coding.

2.2 Deep Network Latent Variable Compression Model For grayscale
and color images, this paper trains two separate learned deep network latent
variable compression models for corresponding image blocks. The overall net-
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work structure is an autoencoder architecture (Figure 3) comprising four com-
ponents: an analysis transform network module (Encoder), quantizer, entropy
coding module (Entropy Coder), and synthesis transform network module (De-
coder). The analysis transform network Encoder consists of multiple stacked
convolutional layers that perform downsampling, feature extraction, and decor-
relation transformations to map the input image to a weakly correlated, compact
latent representation. This latent representation retains all necessary image in-
formation and constitutes the data to be compressed. The synthesis transform
network Decoder performs the inverse operation of the Encoder, also composed
of a series of stacked transposed convolutional layers that generate image infor-
mation through upsampling. The Entropy Coder module depends on a neural
network-learned parameter estimation model of the latent representation distri-
bution, guiding the arithmetic coder to convert quantized latent representation
information into binary streams for storage and network transmission—that is,
the compressed information.

The image feature data x is mapped to latent representation y, the quantizer Q
quantizes y to ŷ, the entropy model � approximates the statistical distribution
of ŷ to guide the arithmetic coder in encoding ŷ into a binary stream. Dur-
ing decoding, the arithmetic coder relies on the entropy model to translate the
binary stream back into quantized features ŷ, and the synthesis transform D
generates image x� based on ŷ information. The main modules are the analysis
transformer E and synthesis transformer D, which differ from traditional trans-
form coding methods in that they are optimized through learning from large
image datasets rather than being handcrafted.

The neural network learns model parameters (weights and biases) based on a
loss function through backpropagation of error gradients. This paper employs
RDO optimization strategy, jointly using image compression distortion and rate
functions with Lagrange multiplier 𝛽 controlling the balance between rate and
distortion, as expressed in Equation (1):

𝐿 = 𝐷(𝑥, 𝑥′) + 𝛽 ⋅ 𝑅( ̂𝑦)

where 𝐷(𝑥, 𝑥′) represents the distortion between original and reconstructed im-
ages, and 𝑅( ̂𝑦) represents the bitrate of quantized latent representation.

2.2.1 Quantizer Compression encoding requires quantization of the latent
representation layer output y, typically using rounding operations. This paper
employs a quantizer with quantization interval step size of 1, using interval
centers to represent quantization output. The quantization formula is:

̂𝑦𝑖 = round(𝑦𝑖)

where the indicator i traverses all elements of the vector, including channels
and spatial coordinates. This approach enables the marginal density of ̂𝑦 to be
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obtained through a trainable discrete probability mass function, with weights
equivalent to probability mass function q. As described in the next subsection,
the marginal density of continuous variables can be approximated by the differ-
ence between the upper and lower limits of the cumulative density function of
the discrete probability density function with unit width.

However, analyzing the loss function reveals that it depends on quantized val-
ues, yet the gradient of the rounding quantization function is almost always zero,
making the loss function composed of rate R and distortion D non-differentiable
and preventing gradient descent optimization. To enable stochastic gradient de-
scent, we implement a dithered quantizer by adding independent and identically
distributed random uniform noise u during training, where u’s distribution in-
terval equals the quantizer’s quantization interval width of 1. During testing
and actual encoding, we directly use the rounding function, as expressed in
Equation (3):

𝑞𝑖 = {𝑦𝑖 + 𝑢, 𝑢 ∼ 𝒰(−0.5, 0.5), during training
round(𝑦𝑖), during testing

2.2.2 Piecewise Linear Function Entropy Model The image compression
model requires lossless encoding of the compact latent representation obtained
from analysis transform to generate binary code streams. This paper employs
arithmetic coding for entropy encoding. Arithmetic coding is an optimal lossless
entropy coding algorithm that maps all coding information to a small interval
[0,1) on the real axis based on the statistical probability distribution of the
source information. The foundation of arithmetic coding is accurate estimation
of the latent representation distribution model, which affects both rate R and
distortion D—that is, the compression performance. We use a non-parametric
piecewise linear density function model implemented via neural network to ap-
proximate the actual data distribution.

Assuming data in the latent representation space are independent and iden-
tically distributed, we can establish a fully factorized model whose likelihood
function is the integral of samples, as in Equation (4). The probability density
model is obtained by convolving the prior distribution density function of latent
representation data with a standard uniform distribution density function. The
encoder’s output feature map serves as input to generate the prior distribution
density model’s cumulative function for latent representation features, yielding
a unit probability mass centered on actual data.

Following reference [8], we design a non-parametric piecewise linear density func-
tion model based on deep neural networks that fits sample data through iterative
training optimization. The non-parametric piecewise linear density function con-
structed using convolutional networks includes K stages of nonlinear transforma-
tion functions, where the K-th stage vector mapping function is 𝑓 ′

𝐾 ∶ ℝ𝑛 → ℝ𝑚,
with 𝜕𝑓′

𝐾
𝜕𝑐 being the gradient of density p—that is, a Jacobian matrix. The model’

chinarxiv.org/items/chinaxiv-202201.00046 Machine Translation

https://chinarxiv.org/items/chinaxiv-202201.00046


s cumulative density can be computed via the chain rule as:

𝑝(𝑐) = 𝑝𝐾(𝑓 ′
𝐾 ∘ 𝑓 ′

𝐾−1 ∘ ⋯ ∘ 𝑓 ′
1(𝑐)) ⋅

𝐾
∏
𝑘=1

∣det 𝜕𝑓 ′
𝑘

𝜕𝑓 ′
𝑘−1

∣

The specific implementation of the nonlinear function is as follows:

𝑓𝑘(𝑥) = 𝑔𝑘(𝐻𝑘(𝑥) + 𝑏𝑘) for 1 < 𝑘 ≤ 𝐾

where 𝐻𝑘(𝑥) represents the transformation function form before the quantizer
layer, and 𝑏𝑘 is the bias term. The final layer function 𝑓𝐾 uses a nonlinear
activation function 𝜎(⋅) to map the probability distribution to the [0,1] interval,
representing the standard distribution of probability density.

3 Experiments

We use partial results from recent FAST pulsar search sky survey projects as
the image compression training and test datasets, comprising 1,159 pulsar im-
age samples and 998 RFI image samples as 8-bit lossless PNG images. The
network model is implemented on an NVIDIA GeForce GTX 1080 GPU using
the PyTorch framework. To validate the proposed algorithm’s performance, we
randomly select five pulsar images from the test set for compression algorithm
testing. For binary images, we compare WBS compression with PNG compres-
sion; for grayscale and color image regions, we compare our deep compression
algorithm with JPEG, JPEG2000, and BPG algorithms. JPEG uses the open-
source libjpeg library, JPEG2000 uses openjpeg implementation, and BPG uses
the libbpg library.

3.1 White Block Skipping Coding Process We segment Type 1 image
regions from candidate diagnostic images—sparse binary images—and calculate
the pixel amplitude histogram to select a threshold of 200 for binarization map-
ping to {0,1}. Next, we select the white block skipping size; through extensive
compression experiments on candidate diagnostic images, we determine the op-
timal block size as 5$×$4 to achieve optimal compressed bitstreams. Finally,
the white block skipping coded data is fed into the QM arithmetic coder.

3.2 Deep Network Model Structure The autoencoder’s input and output
dimensions are consistent, meaning the input image size and channel count
match the compressed model’s reconstructed image. Our compression network
uses image patches of size 256$×256.𝑇 ℎ𝑒𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑚𝑜𝑑𝑢𝑙𝑒𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠𝑓𝑜𝑢𝑟𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙𝑙𝑎𝑦𝑒𝑟𝑠, 𝑡ℎ𝑟𝑒𝑒𝐺𝐷𝑁𝑙𝑎𝑦𝑒𝑟𝑠, 𝑎𝑛𝑑𝑓𝑜𝑢𝑟𝑅𝑒𝑠𝑁𝑒𝑡𝑙𝑎𝑦𝑒𝑟𝑠.𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙𝑙𝑎𝑦𝑒𝑟𝑠𝑝𝑒𝑟𝑓𝑜𝑟𝑚2×$
downsampling: the first convolutional layer uses 128 9$×9𝑘𝑒𝑟𝑛𝑒𝑙𝑠𝑤𝑖𝑡ℎ𝑠𝑡𝑟𝑖𝑑𝑒2𝑎𝑛𝑑𝑝𝑎𝑑𝑑𝑖𝑛𝑔4; 𝑡ℎ𝑒𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑛𝑑𝑡ℎ𝑖𝑟𝑑𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙𝑙𝑎𝑦𝑒𝑟𝑠ℎ𝑎𝑣𝑒1285×5𝑘𝑒𝑟𝑛𝑒𝑙𝑠𝑤𝑖𝑡ℎ𝑠𝑡𝑟𝑖𝑑𝑒2𝑎𝑛𝑑𝑝𝑎𝑑𝑑𝑖𝑛𝑔2; 𝑡ℎ𝑒𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘𝑙𝑎𝑦𝑒𝑟𝑖𝑠𝑎𝑙𝑠𝑜𝑎𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙𝑙𝑎𝑦𝑒𝑟𝑤𝑖𝑡ℎ𝑠𝑡𝑟𝑖𝑑𝑒2𝑎𝑛𝑑𝑝𝑎𝑑𝑑𝑖𝑛𝑔2, 𝑤𝑖𝑡ℎ𝑎𝑑𝑗𝑢𝑠𝑡𝑎𝑏𝑙𝑒𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠𝑠𝑝𝑒𝑐𝑖𝑓𝑦𝑖𝑛𝑔𝑡ℎ𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓16×$16
feature maps to control bitrate. The Decoder module has similar parameters
to the Encoder module, with Conv2d replaced by ConvTranspose2d in reverse
order.
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Our network model is based on RDO optimization, jointly using compression
distortion and bitrate as the target loss function. We train two compression
models for grayscale and color images. The Lagrange multiplier 𝜆 regulates
different distortion-rate combinations to meet various compression quality re-
quirements, enabling variable-rate compression. In experiments, we train ten 𝜆
models with 𝜆 values of {16, 32, 64, 128, 512, 1024, 2048, 4096, 6144, 8192}. We
optimize models using the Adam algorithm with an initial learning rate of 10−3,
momentum factor of 0.99, and weight decay rate of 10−4. The iteration count is
set to 100,000 with a batch size of 16. We first train a high-bitrate model, then
use it as a pretrained model to train other models with adjusted 𝜆 values.

3.3 Experimental Results and Analysis White Block Skipping Cod-
ing Performance Evaluation. For Type 1 image regions in candidate diag-
nostic images, we compare improved WBS compression with basic WBS and
PNG compression. Table 1 shows that improved WBS compression achieves
five times better performance than PNG, and WBS with QM coding further im-
proves compression performance. Figure 4 reveals that PNG and WBS binary
images are essentially identical, though PNG images have smoother edges.

Deep Network Model Objective Evaluation. We set the neural network la-
tent representation layer channel numbers to N=64 for grayscale and N=128 for
color images, with a downsampling rate of 16, to train deep network compression
models. Since both model types share the same methodology and due to space
limitations, we describe only the color image network model’s PSNR and SSIM
performance at different bitrates. Experimental results in Figure 5(a) show the
PSNR-Rate curve, reflecting the mean squared error between decoded and origi-
nal images across various bitrates. Overall, our deep network compression model
(DNCM) performance is similar to JPEG2000, significantly better than JPEG
but not exceeding BPG. At 0.4 bpp, DNCM achieves 31 dB PSNR, intersecting
with JPEG2000, 1.4 dB higher than JPEG, and 8 dB lower than BPG. The com-
pression effect is clearly superior to JPEG and approaches JPEG2000 and BPG.
At near-lossless compression, traditional algorithms outperform neural network
methods due to convolutional neural network oversmoothing. Figure 5(b) shows
the SSIM-Rate curve, reflecting structural similarity between decoded and origi-
nal images. DNCM significantly outperforms JPEG and JPEG2000 and slightly
exceeds BPG. At 0.2 bpp, DNCM’s SSIM value exceeds 0.99, while the best
traditional algorithm BPG achieves 0.95. When bpp < 0.7, DNCM’s SSIM
remains above 0.95, demonstrating its absolute advantage in maintaining per-
ceptual quality at low bitrates and high compression ratios.

Deep Network Model Subjective Evaluation. Figure 6 shows visual results
of different compression algorithms at similar bitrates. JPEG exhibits blocking
artifacts, while our DNCM algorithm generally matches BPG performance and
outperforms JPEG and JPEG2000. The color diagnostic images achieve the
best visual quality at relatively low bitrates.

In summary, pulsar diagnostic images contain numerous sparse curves, random
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noise points in grayscale images, and color image blocks. No single traditional
lossy compression algorithm is optimal. Our partitioned strategy utilizing white
block skipping coding and neural network compression models provides targeted,
specialized compression for diagnostic images. Curve and text image blocks,
when converted to binary images, achieve extremely high compression ratios
with minimal loss through WBS. Crucially, the network compression module’s
functional mappings are learned from large diagnostic image datasets, maximiz-
ing reflection of diagnostic image data space characteristics and demonstrating
model specialization. Since pulsar diagnostic images primarily serve as visual
aids for human judgment of pulsar candidates, with observation focusing on
curve structures and inter-subimage structural information, our algorithm’s
ability to maintain high SSIM values at low bitrates reflects its advantage in
visual perceptual quality.

4 Conclusion

Pulsar diagnostic images consist of sparse binary images, randomly distributed
grayscale images, and color images, making it unreasonable to treat them uni-
formly with a single transform compression algorithm. This paper proposes a
partitioned compression approach using white block skipping coding and deep
network compression models. WBS coding, effective for binary images with
large monochrome regions, extracts curve and text sub-images from pulsar di-
agnostic images, selects quantization thresholds to binarize images into bit ma-
trices, chooses optimal block sizes for WBS encoding, and feeds the result into
a QM coder to further enhance compression performance, ultimately achieving
compression ratios five times better than PNG. The deep network compres-
sion method trains separate models for grayscale and color images. The deep
network compression model employs a convolutional neural network-based au-
toencoder structure comprising analysis transform encoding network, quantizer,
entropy coder, and synthesis transform encoding network. All compression
modules are optimized through learning from large pulsar candidate diagnostic
image datasets, providing more effective transform mapping than traditional
handcrafted modules. Images are mapped to latent representations that are
more compact and decorrelated, while the learned entropy coding module ap-
proximates the latent space distribution more accurately and operationally than
cumulative probability histograms, guiding statistical distribution-based arith-
metic coders for lossless encoding. Experimental results demonstrate that our
deep network compression algorithm, when applied to pulsar candidate diagnos-
tic images from recent FAST sky survey projects, achieves PSNR performance
superior to JPEG and comparable to JPEG2000, while SSIM performance far
exceeds traditional compression algorithms. This paper fully exploits significant
feature differences among sub-images, implementing a partitioned compression
strategy that divides images into three sub-image regions and applies WBS
and deep network compression methods according to sub-image characteristics,
improving coding efficiency. We also observe that the neural network-based en-
tropy estimation model used herein is a concise and operational approach, and

chinarxiv.org/items/chinaxiv-202201.00046 Machine Translation

https://chinarxiv.org/items/chinaxiv-202201.00046


the accuracy of the estimated entropy model in matching the true latent distribu-
tion directly affects rate and distortion. Therefore, considering new methods to
improve entropy model estimation accuracy could further enhance compression
performance.
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