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Abstract

The dynamic characteristics of new energy power systems are complex, featur-
ing numerous stability analysis methods and stability criteria. Different stability
methods/criteria correspond to different physical interpretations and applicable
scopes, making it currently difficult to theoretically address what problems each
criterion is suitable for solving and whether their corresponding physical inter-
pretations are reasonable. This paper is divided into two parts: the first part
proposes an applicability assessment method for stability criteria and attempts
to answer whether the physical interpretations corresponding to stability crite-
ria are reasonable; the second part applies this method to analyze the applicable
occasions of some typical criteria and attempts to provide their physical inter-
pretations. The first part begins by reviewing and summarizing the deduction
mechanisms of existing stability criteria, as well as the physical meanings un-
derlying each criterion. Secondly, from three perspectives—stability equivalence,
nominal property, and robustness—three qualitative principles for the applicabil-
ity of stability criteria are proposed, along with a quantitative indicator based
on loop gain sensitivity. Finally, using grid-connected converters as an example,
the properties of several impedance-based analysis methods in frequency-domain
analysis are illustrated, and their applicable scopes are discussed. The applica-
bility and physical interpretations of other typical criteria in power systems will
be explored in the second part.
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ABSTRACT

Many methods and criteria for stability assessment have been proposed due to
the complex dynamics of renewable power systems. The physical implications
of these methods/criteria and their scopes of adaptation differ. It is difficult to
theoretically answer, for a given stability issue, which stability criterion is suit-
able and whether the corresponding physical interpretation is reasonable. This
paper is divided into two parts. Part I proposes methods for assessing the adap-
tation of stability criteria and attempts to answer whether the corresponding
physical interpretations are reasonable. Part II applies these methods to ana-
lyze the adaptation of typical criteria and derives the physical interpretations.
In Part I, we first review the derivation processes of existing stability criteria
and their underlying physical significance. Second, we propose selection princi-
ples for stability criteria from three perspectives: stability equivalence, nominal
performance, and robust stability, and introduce a quantitative index called
loop gain sensitivity. Finally, we analyze the adaptation of several impedance
criteria for grid-connected converters.

KEYWORDS: stability criterion; stability mechanism; loop gain sensitivity;
robustness
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1 Introduction

The development of renewable energy power systems represents a crucial com-
ponent of China’ s energy transition and “dual carbon” strategy, with rapid
growth anticipated for wind power, photovoltaic, and other renewable sources.
However, the complex dynamic characteristics of renewable energy equipment
present numerous challenges for power system stability analysis and control
[1-3].

The single-machine infinite-bus system of grid-connected equipment serves as
one of the simplest systems for understanding complex power system dynam-
ics [4-6]. Nevertheless, such systems remain multiple-input multiple-output
(MIMO) systems with intricate dynamic characteristics, making their stabil-
ity (including stability margins, hereinafter referring specifically to small-signal
stability unless otherwise stated) difficult to analyze and quantify [7]. Numer-
ous time-domain and frequency-domain analysis methods and stability criteria
have been developed. Frequency-domain methods are particularly favored due
to their suitability for black-box analysis and control strategy design. A main-
stream approach retains key variables or models that determine stability while
equivalently transforming the remaining components, aiming to obtain a single-
input single-output (SISO) system equivalent to the original MIMO system in
terms of stability, accompanied by a stability criterion for this equivalent SISO
system.

For example, for synchronous machines, the damping torque method—suitable
for analyzing low-frequency oscillations—is derived by focusing on rotor angles
and eliminating intermediate variables based on physical understanding of low-
frequency oscillations [4]. For subsynchronous oscillation (SSO), the complex
torque coefficient method and equivalent impedance method are derived by
focusing on shaft rotor dynamics and circuit characteristics, respectively [5].
Similarly, for multi-timescale oscillation issues in power electronic devices, var-
ious stability criteria have emerged based on different physical insights: gen-
eralized /polar impedance criteria focusing on port voltage/current phase an-
gle stability [8]; sequence impedance criteria focusing on positive/negative se-
quence loop stability [9-11]; dominant loop methods focusing on phase-locked
loop (PLL) stability [12]; and generalized torque coefficient methods focusing
on inertia and synchronization dynamics [13].

Following this approach, many stability analysis methods can be derived for
the same problem. Since different derivation methods originate from the same
system, they yield consistent stability judgments as long as the mathematical
derivations are rigorous. Taking converter impedance methods as an example,
impedance criteria under various coordinates can be transformed into one an-
other [14], producing identical stability assessment results. However, different
stability criteria emphasize different physical characteristics and thus reflect
different physical meanings. For instance, impedance criteria in polar coordi-
nates focus on phase angle information of port voltage/current, reflecting syn-
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chronization characteristics between equipment and the grid, whereas sequence
impedance criteria extract voltage/current sequence components, reflecting se-
quence circuit resonance characteristics between equipment and the grid.

Moreover, different criteria exhibit varying capabilities in characterizing system
stability degrees. For example, stability margin characteristics differ across
criteria, and the robustness of controllers designed based on different criteria
varies significantly [15]. Consequently, the effectiveness of different analysis
methods or criteria differs, and their applicable scenarios vary, raising a critical
question: What are the differences among these stability analysis methods or
criteria, which scenarios are they respectively suitable for, and why?

This paper investigates whether various stability analysis methods and criteria
are applicable and whether their derived physical interpretations are reason-
able. We propose quantitative methods and indices for evaluating criterion
performance and further apply these assessment methods to analyze multiple
equipment types and criteria, clarifying their relationships and corresponding
physical interpretations for classification. The overall logical structure is illus-
trated in Fig. 1. The paper is divided into two parts: Part I discusses the
principles and analysis methods for determining the applicability of equipment
stability criteria, while Part II examines the stability mechanisms of typical
equipment and their classification methods.

Part I is organized as follows: First, we review the main stability analy-
sis approaches and criteria for power system equipment. Second, we explain
the mathematical derivation processes and physical interpretations of various
stability criteria, demonstrating that different criteria possess distinct physical
meanings. Third, we propose selection principles for stability criteria and quan-
tify them through loop gain sensitivity indices. Finally, using grid-connected
converters as an example, we discuss the characteristics of several impedance-
based analysis methods in frequency-domain analysis and explore their scopes
of application.

The nomenclature used in this paper is provided in Table 1.

Table 1 Nomenclature in this article

Symbol  Description

OL(s) Loop gain sensitivity
Sé(s) Uncertainty sensitivity
det(-)  Matrix determinant
arg(+) Complex argument

Aa Small increment of variable a
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2 Review of Stability Criteria Derivation
2.1 Modeling of Grid-Connected Equipment

The single-machine infinite-bus system models for synchronous machines, con-
verters (representing PV, direct-drive wind turbines, etc.), and doubly-fed in-
duction generators are shown in Fig. 2, with linearized models expressed in
either time-domain or frequency-domain form.

Fig. 2 Grid-connected system of power equipment

The synchronous machine grid-connected system can be described by time-
domain state equations:

Az = AAz 4+ BAu (1)
Ay =CAzx

where Ax typically represents a state vector including multiple state variables
such as rotor frequency Aw, rotor angle Ad, excitation voltage AE_ f, and g-axis
transient voltage AE _ q; Au and Ay are input and output vectors; and A, B,
C are the system state matrix, input matrix, and output matrix, respectively.

Applying Laplace transform to (1) yields the frequency-domain model of the
synchronous machine grid-connected system:

Ay(s) = G(s)Au(s) (2)

where G(s) = C(sI — A)"!B is the system transfer function matrix.

Similarly, renewable energy grid-connected systems such as PV and wind tur-
bines can be modeled in dq, sequence, or polar coordinates:

AU, AL
Al =26 | art (3)
Al AU,

where AU_a, AU_b, Al _a, and AI_b represent small-signal quantities of
equipment port voltage and current in arbitrary coordinates (ab), such as rect-
angular coordinates (dq), sequence coordinates (pn), or polar coordinates (M );
and Z(s) is the equipment complex impedance matrix.

2.2 Review of Typical Stability Criteria

As shown in (1)-(3), whether for synchronous machines or renewable energy
equipment, single-machine infinite-bus systems are MIMO systems. To facilitate
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analysis and control, researchers typically perform mathematical transforma-
tions or physical equivalences on complex systems to obtain simple, applicable
stability criteria, which fall into two main categories.

Category 1: Constructing equivalent SISO systems based on equip-
ment physical characteristics to derive corresponding stability crite-
ria. This includes: 1. Using Schur complement transformation to eliminate
partial variables (corresponding algebraically to transfer function transforma-
tions in physics), such as damping torque method, complex torque coefficient
method, selective modal analysis (SMA) [4-5], modified sequence impedance cri-
terion, and generalized impedance criterion, as well as directly calculating the de-
terminant of MIMO system characteristic equations in impedance methods [16].
2. Diagonalizing matrices through similarity transformations to convert MIMO
systems into multiple equivalent SISO systems for analysis, such as generalized
Nyquist criterion based on eigenvalue locus decomposition [7], dq impedance cri-
terion [17], unified impedance criterion [18], and diagonalization transformation
[19]. 3. Based on physical understanding, ignoring coupling or secondary loops
to obtain simplified SISO systems, such as equivalent impedance method for syn-
chronous machine SSO [5] and sequence impedance method without considering
coupling [9].

Category 2: Directly deriving stability criteria or quantitative stabil-
ity margin indices from MIMO systems, such as impedance criteria based
on forbidden regions [20-21] or norms [22-23], and criteria based on short-circuit
ratio [24-25].

In summary, the mathematical and physical methods for forming stability cri-
teria are illustrated in Fig. 3. Although different stability criteria generation
methods exist, the fundamental approach is to simplify complexity by leveraging
the Nyquist stability criterion for SISO systems to derive physically meaningful
stability criteria:

Fig. 3 Mathematical and physical method of deriving stability crite-
rion

1. Damping Torque Method: Used for analyzing low-frequency oscilla-
tions in synchronous machines, this approach retains Aw and Ad vari-
ables related to rotor motion equations and simplifies the full-order model
represented by (1) into a pseudo “second-order”system through Schur com-
plement transformation of state equations [5], thereby forming a damping-
based stability criterion using SISO system analysis techniques.

2. Complex Torque Coefficient Method: This method simplifies
frequency-domain models by retaining oscillation modes strongly related
to the shaft system [4]. It can be extended to converter electrical inertia
analysis, yielding the generalized torque coefficient method [13]. In the
frequency domain, stability criteria formed by damping torque method
and complex torque coefficient method are equivalent to the Nyquist
criterion [26].
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3. Frequency-Domain Impedance Method: When analyzing induction
generator effects formed by synchronous machines with series compensa-
tion, the synchronous machine and series compensation are equivalenced
using one-dimensional impedance and circuit [5], forming impedance cri-
teria with circuit mechanism interpretation. For grid-connected convert-
ers, impedance models are generally two-dimensional matrices. For dq
impedance criteria, the generalized Nyquist criterion is typically used to
convert MIMO systems into two equivalent SISO systems [17]; modified
sequence impedance [10-11] and polar impedance criteria [8] utilize Schur
complement transformation of closed-loop characteristic equation matrices
to convert systems into SISO systems for analysis.

In summary, these criteria share the common feature of transforming complex
systems into relatively simple systems to form convenient stability criteria. Dif-
ferent criteria focus on different key links, naturally resulting in different phys-
ical meanings. This issue can be analogized to a mechanical system: different
criteria correspond to different perspectives or coordinate systems, and a good
observation perspective better quantifies stability. For example, in the equilib-
rium system shown in Fig. 4, ignoring disturbance terms, the system appears
balanced from any perspective. However, only the side view can capture the
“essence” that determines system balance (stability) or imbalance (instability)
when considering disturbances, making it more scientific and mechanistic.

Fig. 4 Effect of observation perspective on the understanding of phys-
ical mechanism

Similarly, numerous stability analysis methods and criteria can be derived
through mathematical transformations or physical equivalences. However,
different criteria adopt different descriptive perspectives, resulting in varying
effectiveness for mechanism analysis. The following sections will discuss the
rationality of perspectives, analysis methods, and stability criteria from a
control theory perspective in conjunction with specific scenarios.

3 Principles for Stability Criterion Selection
3.1 Mathematical Derivation Process of Stability Criteria

Without loss of generality, this paper uses Schur complement transformation of
transfer function matrices as an example to illustrate the mathematical deriva-
tion approach for constructing equivalent systems and obtaining criteria, along
with their physical interpretations.

Consider a grid-connected system described by the transfer function matrix in
(2) or (3). For simplified derivation, we select an equal number of input and
output variables for modeling, yielding the system frequency-domain model:
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Ay(s) = G(s)Au(s) (4)
where G(s) is an n x n transfer function matrix; Au(s) = [Auq, -, Au,] and
Ay(s) = [Ayy,-,Ay,] are n-dimensional input and output vectors, respec-

tively.

Let the system feedback transfer function matrix be K(s):

Au(s) = —K(s)Ay(s) ()

The closed-loop characteristic equation of this multivariable system is:

det(I 4+ L(s)) =0 (6)

where L(s) = G(s)K(s) is the system open-loop transfer function matrix.

Eliminating partial input/output variables yields an equivalent model. Let the
retained r output variable vector be Ay, = [Ay,,-, Ay,], and the eliminated
variable vector be Ay, = [Ay, q,-,Ay,]. Then (6) can be written in block
matrix form:

d“(ﬁﬁlﬁﬁguﬁéiwﬂ)o @)

After eliminating output variables Ay, (s), the characteristic equation becomes:

det(I,, + L,(s)) = 0 (8)

where L, (s) is the equivalent model’ s open-loop transfer function matrix:

L,(8) = Ly (s) = Lye(8) (oo + Lee(5)) ™ Ly (5) 9)

When the equation det(I,, + L..(s)) = 0 has no right-half-plane (RHP) zeros,
the unstable modes of the equivalent system remain unchanged from the original
system [5]. This equivalent process can also be achieved by eliminating partial
input variables in the frequency-domain model or partial state variables in the
time-domain state-space model; see [5] for details.

When retaining one set of input/output variables (r = 1), a stability crite-
rion (and characteristic equation of the equivalent SISO model) for the grid-
connected system can be obtained, as shown in (10). In this criterion, the open-
loop transfer function matrix L,.(s) reduces to the open-loop transfer function

Ly(s):
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1+ Ly(s) =0 (10)

where L, (s) is the open-loop transfer function of the equivalent system obtained
by retaining the first output variable Ay;:

Ly(s) = Ly;(s) — L12,1n(8)(122,nn + L22,nn(8))_1L217n1(8> (11)

Here, L(s) can be rearranged through row/column exchanges to retain any out-
put variable Ay, (or input variable Au, ), yielding different equivalent charac-
teristic equations 1 + L, (s) = 0 and open-loop transfer functions L, (s).

Analyzing L (s) using frequency-domain theory reveals the stability properties
of the corresponding characteristic equation. For convenience, the equivalent
characteristic equation 1 + L, (s) = 0 is hereinafter referred to as the stability
criterion. Notably, although some classical criteria mentioned in Section 1.2,
such as damping torque method and complex torque coefficient method, are not
obtained through matrix Schur complement transformation, they can similarly
be converted into the form of (10). The applicability analysis methods proposed
herein remain applicable, though detailed elaboration is omitted due to space
constraints.

Since input/output selection is not unique, repeating this process yields multiple
stability criteria and methods—i.e., different L, (s) exist. However, the following
questions must be addressed:

Question 1: What are the differences among various stability analysis meth-
ods/criteria, which scenarios are they respectively suitable for, and why are they
suitable?

3.2 Physical Interpretation of Stability Criterion Derivation

The process of transforming complex systems into equivalent simplified systems
physically corresponds to merging transfer function loops of partial secondary
loops.

As shown in Fig. 5(a), the open-loop transfer function matrix between retained
input/output variables is Ly, (s), representing the dominant loop (shown in blue)
composed of extracted key links. The process of eliminating other variables
to obtain the equivalent transfer function matrix L,.(s) can be viewed as #f
# (folding) other secondary loops/links into the dominant loop, yielding the
equivalent system shown in Fig. 5(b).

Fig. 5 The frequency domain model of equivalent system

The equivalent SISO system is obtained based on physical understanding of
instability and extraction of key links, and the resulting stability criterion has
clear physical meaning: (10) represents the criterion formed by retaining output
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variable y,, reflecting stability issues dominated by variable y,; or, from a trans-
fer function loop perspective, reflecting physical problems dominated by the
link corresponding to the dominant loop Lq;(s). For example, when retained in-
put/output are current/voltage, the criterion describes system impedance char-
acteristics; when phase angle variables are retained, it reflects equipment syn-
chronization characteristics. Therefore, the difference among various stability
criteria and equivalent models lies in different understandings of instability,
and different input/output variables forming corresponding stability criteria re-
flect different physical mechanisms. Consequently, another question must be
addressed:

Question 2: What mechanism or physical interpretation do different stability
analysis methods/criteria reflect, and is it reasonable and scientific?

In summary, grid-connected systems can form different stability criteria and
corresponding equivalent models through mathematical transformations. Even
though the stability assessment results of various criteria are consistent, the
reflected physical characteristics and mechanism interpretations differ. Contin-
uing with the Fig. 4 analogy, under the side view (e.g., a certain criterion),
the disturbance force has a smaller projection than the balancing force, whereas
under the top view (another criterion), the disturbance force “overwhelms” the
balancing force. Thus, when considering uncertainty factors, the so-called “bal-
ance mechanism” obtained from the top view cannot be considered the true
mechanism. Therefore, each criterion’ s focus on key links reflects physical char-
acteristics, and applicable scenarios differ. How to interpret and evaluate the
applicability scope of each criterion will be discussed in Chapter 3.

3.3 Example: Stability Criteria for Renewable Energy Grid-
Connected Systems

Taking PLL-based converters as an example, the renewable energy grid-
connected system has a polar coordinate impedance model [15]:

AU - Yur(s) Yye(s)| [AU (12)
Al Yor(s)  Yog(s)] | A0
where expressions for each element and operating conditions are given in [15].

The system’ s transfer function model is shown in Fig. 6(a), representing a
MIMO system.

Through coordinate transformation, polar coordinate impedance can be con-
verted to dq rectangular coordinates or pn sequence coordinates, with equivalent
stability discrimination among the three [14].

The generalized impedance criterion eliminates AFE/AU variables from the
transfer function model in Fig. 6(a) and retains EAfQ;/UAf,, variables—i.e.,
phase angle variables—with the characteristic equation:
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14 Lg(s) =0 (13)

Yoo(s)
Yoo, met(s)’

Nyquist stability criterion for impedance. See [15] Eq. (24) for details.

where the open-loop transfer function Lg(s) representing the

The generalized impedance model can be viewed as taking the blue phase angle
loop in Fig. 6(a) as the dominant loop while folding the orange magnitude loop,
yielding the equivalent system shown in Fig. 6(b).

Fig. 6 Generalized impedance equivalent model of grid-connected
converter

Sequence impedance is established in the positive/negative sequence coordinate
system, comprising two loops as shown in Fig. 7. Directly ignoring coupling
terms between positive and negative sequences simplifies the MIMO system to
an SISO system, but analysis results may be incorrect when PLL participation is
significant [10-11]; the two are not equivalent. The modified sequence impedance
model does not ignore coupling terms. By eliminating negative sequence volt-
age component AU, and retaining positive sequence voltage component AUP,
the modified sequence impedance characteristic equation is obtained (negative
sequence is similar):

L+ Lpn(s) =0 (15)

where positive/negative sequence open-loop transfer functions LP/N(S) =

Z”Z’"i;gs>; see [15] Egs. (25)-(26) for details. The modified sequence impedance

model folds the converter’ s negative sequence loop impact into the positive
sequence. For convenience, hereinafter “sequence impedance” refers to the
sequence impedance of the modified sequence impedance model.

Fig. 7 Sequence impedance equivalent model of grid-connected con-
verter

In addition to stability criteria focusing on converter phase angle and circuit
characteristics, there are criteria focusing on DC-side dynamics, such as the
equivalent model obtained by retaining Al /AU, [27], with the characteristic
equation:

1+ Lpe(s) =0 (16)
where Ly (s) = 2227;(;;5), see [27] for specific expressions. This model can also

be transformed with other impedance models [28]; herein, we refer to it as the
DC voltage stability criterion and DC equivalent model.

These three models retain different input/output variables and derive different
stability criteria. Although these three stability criteria share the same base
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model and produce consistent stability assessment results, their physical mean-
ings differ. The generalized impedance criterion retains the system’ s phase
angle loop, describing the phase angle impedance matching characteristics be-
tween equipment and the grid, which can explain synchronization stability dom-
inated by phase angle. The sequence impedance criterion uses positive/negative
sequence impedance resonance conditions as the stability criterion, describing
equivalent impedance resonance characteristics, which can be interpreted as se-
quence circuit electrical resonance problems. The DC voltage stability criterion
retains DC voltage/output power and can be interpreted as AC current /voltage
magnitude stability issues (DC current has a strong relationship with AC cur-
rent magnitude; see Section 4.1).

4 Principles for Selecting Equipment Stability Criteria
4.1 Qualitative Principles and Quantitative Indices

As discussed above, a time-invariant system can form multiple stability criteria
and analysis methods by selecting different input/output variables, correspond-
ing to multiple equivalent simplified systems and open-loop transfer functions
L, (s), as well as multiple physical interpretations. For a given oscillation mode,
the problem becomes how to identify the most suitable criterion for stability
analysis and control from numerous possibilities.

For convenience, we first define the following terms: 1. Definition (Mech-
anism Criterion and Mechanism Model): For a given system oscillation
mode, the stability criterion and equivalent model suitable for its analysis and
control are called the mechanism criterion and mechanism model for that prob-
lem. 2. Definition (Dominant Output Variable and Derived Mecha-
nism): The output variable retained by the mechanism model and criterion is
the dominant output variable for that problem. Combining equipment physical
characteristics with the mechanism model to derive the cause of system insta-
bility and its physical interpretation constitutes the derived mechanism for that
problem.

According to these definitions, determining whether a method/criterion is suit-
able for analyzing stability in a given scenario (Question 1) or whether a stability
mechanism is scientific (Question 2) can be transformed into analyzing whether
the corresponding stability criterion (or equivalent model) is reasonable—i.e.,
whether the selected open-loop transfer function L, (s) in (10) is reasonable. If
the stability criterion selection is reasonable, its corresponding equivalent model
can be considered the mechanism model, and its derived physical interpretation
of instability should be scientific.

Furthermore, considering that the purpose of obtaining mechanism mod-
els/criteria is to facilitate system stability margin assessment and control
design for achieving good dynamic performance, analyzing whether L,(s) is
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reasonable can be transformed into analyzing whether it satisfies multiple
necessary constraints required by control theory, thereby converting the
subjective question of “whether the method is suitable and the mechanism
scientific” into an objective problem solvable by control theory.

According to classical control theory, to ensure good dynamic performance, dy-
namic systems must satisfy not only stability requirements but also nominal
performance (NP) and robust stability (RS) requirements [29], as shown in Fig.
8. NP describes the ability of the nominal system’ s Nyquist curve to stay away
from the (—1, j0) point (not entering the blue circle), i.e., the system possesses
certain stability margins. RS describes the ability of the nominal system to
remain stable after considering uncertainty factors, i.e., the uncertainty region
represented by red circles does not encircle the (—1,50) point.

Fig. 8 Schematic diagram of equivalent system satisfying the selection
principles

Therefore, to ensure effective analysis and control design, mechanism criteria
and models must satisfy the following three qualitative principles:

1. Principle 1 (Stability Equivalence Principle): Ensure stability
equivalence between the stability criterion and the original system
without “misjudgment” (see Section 3.2).

2. Principle 2 (Nominal Performance Principle): Ensure the stability
margin represented by the stability criterion is valid; e.g., the criterion
must not contain open-loop RHP poles (see Section 3.3).

3. Principle 3 (Robustness Principle): Ensure the stability criterion
possesses high robustness, with stability margin sensitivity to uncertainty
factors not being excessive (see Section 3.4).

To quantitatively analyze the nominal performance and robustness of equivalent
models, this paper defines the following loop gain sensitivity index:

Definition (Loop Gain Sensitivity/Margin Change Rate): The loop
gain sensitivity at oscillation mode s;, defined as the product of the open-loop
transfer function’ s sensitivity to oscillation mode s; and the unit direction
vector of the open-loop transfer function at oscillation frequency wy, is:

dL(s) L(s,)
ds |L(s1)|

5=5,

OL(sy) = (17)

where the prime denotes derivative of the transfer function.

Loop gain sensitivity is a complex number reflecting the sensitivity of the open-
loop transfer function (margin function) to oscillation modes, capable of char-
acterizing changes during model tuning or perturbation, as shown in Fig. 9. Its
angle and magnitude have the following physical meanings: the angle arg(OL)
characterizes the difference between the tuning angle and oscillation mode in-
crement angle, enabling analysis of whether the stability criterion satisfies the
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nominal performance principle; the magnitude |OL| characterizes the change
magnitude of the transfer function under perturbation, useful for analyzing the
robustness of stability criteria. When oscillation mode s; is a weakly damped
mode, OL(jw;) ~ OL(sy).

Fig. 9 Physical significance of loop gain sensitivity

4.2 Qualitative Principle 1: Stability Equivalence Principle

Ensuring system stability is a basic control requirement. Therefore, stability
criteria must first guarantee correct analysis results. For example, during the
Schur complement transformation discussed earlier, when the eliminated trans-
fer function contains unstable poles, the equivalent system’ s transfer function
may lose some unstable poles of the original system due to zero-pole cancellation,
leading to incorrect stability judgment results [30].

A sufficient condition for this principle is that the ignored or eliminated transfer
function loop does not contain unstable modes. Notably, the stability equiv-
alence principle is generally satisfied because equipment control design typi-
cally ensures each transfer function loop contains no unstable modes [7]. This
principle receives the most attention; for example, the common assumption in
impedance methods is that “grid-connected equipment is stable.”

4.3 Qualitative Principle 2: Nominal Performance Principle

4.3.1 Stability Margin Failure and Nominal Performance Principle
To ensure system nominal performance, the Nyquist curve must stay away from
the (—1, j0) point [29], i.e., the system must possess adequate stability margins.
Therefore, nominal performance analysis presupposes that stability margins are
meaningful or valid.

According to frequency-domain theory, the system margin function M (w) is [29]:
M(w) = |1+ L(jw)] (18)

The value of the margin function at oscillation mode s; frequency w; is the
vector margin (VM):

VM = |1+ Lijw,)| (19)

The magnitude of the dominant mode’s vector margin approximates the shortest
distance from the Nyquist curve to the (—1, j0) point, capable of characterizing
stability margins [31]:

M =~ min |1+ L(jw)| (20)

wel0,00)
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The vector margin angle is commonly used to guide control design. The direction
angle a for fastest increase satisfies:

o {arg(M) if arg(M) <0 (21)

arg(M)—= if arg(M) >0

If the system open-loop transfer function is tuned to L(s) = L(s) + k(s), the
tuning angle at the oscillation mode frequency is:

B = arg(L(jw,)) — arg(L(jw,)) (22)

When tuning angle 3 satisfies 8 € (o«—7/2, a+7/2), the system’ s vector margin
increases; otherwise, it decreases.

However, when the eliminated transfer function loop is improperly selected, the
equivalent system may contain open-loop RHP poles, potentially causing the
phenomenon where margin increases but characteristic roots shift rightward,
leading to stability margin failure. For example, consider an open-loop transfer
function L(s) = % with RHP poles. Its Nyquist curve is shown in
Fig. 10(a), encircling the (—1, jO) point once, corresponding to system stability.
After parameter tuning, the vector margin decreases to V.M, and increases to
MYV; from MV, yet the system’ s dominant characteristic roots shift rightward
in both cases, as shown in Fig. 10(b).

Fig. 10 Stability margin failure caused by RHP poles of the open
loop transfer function

At this point, the stability margin loses meaning because tuning parameters
according to the vector margin increase direction actually makes the system
less stable. This phenomenon is termed “margin reversal” caused by open-loop
RHP poles, which can be used to identify open-loop RHP pole issues.

Nominal Performance Principle: The mechanism criterion (mechanism
model) must have valid stability margins within the analysis frequency band,
generally simplified to the absence of margin failure caused by open-loop RHP
poles.

4.3.2 Nominal Performance Discrimination Method: Angle of Loop
Gain Sensitivity This paper utilizes the angle of loop gain sensitivity to
identify the “margin reversal” phenomenon caused by open-loop RHP poles,
excluding equivalent models that do not satisfy the nominal performance prin-
ciple.

Theorem (Angle Property of Loop Gain Sensitivity): Consider open-
loop transfer function variation k(s) caused by uncertainty perturbation, where
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the perturbed transfer function is L(s) = L(s) + k(s). The angles of characteris-
tic root increment As, vector margin increment AV M, and loop gain sensitivity
OL satisfy:

arg(As) ~ arg(AVM) — arg(OL) (23)

Proof: The perturbed characteristic equation and vector margin are:

1+L(s)=0, VM=|1+ L(jw,)| (24)

Differentiating both sides of (24) with respect to s yields:

L'(s) = L'(s) + k' (s) (25)
At the oscillation mode s = s;, 1 + L(s;) = 0, giving:

d(1+ L(s))

- = L'(s) (26)

s=5,

Differentiating both sides of (25) with respect to k yields:

dVM _ d|1+ L(jw,)|
dk dk

(27)

Since vector multiplication adds angles, the oscillation mode movement direction
satisfies arg(As) ~ arg(AVM) — arg(OL). QED.

Based on the angle property of loop gain sensitivity and the above analysis, the
open-loop transfer function of mechanism criteria and models should satisfy:

Angle Condition of Loop Gain Sensitivity: When the vector margin in-
creases microscopically (tuning angle 8 € (o — /2, + 7/2)), if the difference
between the tuning angle and loop gain sensitivity angle (y = 8 — arg(OL))
falls within (—m/2,7/2), the stability criterion exhibits “margin reversal,” fails
to satisfy the nominal performance principle, and cannot serve as a mechanism
criterion.

Proof: When the vector margin increases microscopically, tuning angle § =
arg(AVM). According to the angle property, v = arg(As). Therefore, if 3 €
(a — /2, + 7w/2) and v € (—m/2,7/2), the vector margin increase causes the
characteristic root to shift rightward, resulting in “margin reversal.”

When the equivalent model contains no open-loop RHP poles, increasing the
vector margin always shifts characteristic roots leftward, enhancing stability,
with tuning angle 8 € (o — 7/2,a + 7/2) having a fixed range. When the
equivalent model contains open-loop RHP poles, “margin reversal” may or may
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not occur, making it impossible to determine the tuning range that enhances
system stability. Thus, “margin reversal” identified by the angle condition is
a sufficient condition for the existence of open-loop RHP poles in the stability
criterion.

4.4 Qualitative Principle 3: Robustness Principle

4.4.1 Robustness Issues and Robustness Principle Literature [15] points
out that different equivalent impedance models exhibit inconsistent robustness
for the same oscillation mode and uses condition number indices to measure
uncertainty amplification in different equivalent models. Without loss of gen-
erality, using the equivalent process in (8)-(11) as an example, when retaining
the first output variable, the equivalent system open-loop transfer function is
(11); when retaining the n-th output variable, the equivalent system open-loop
transfer function is:

L, (8) = Ly, (8) = Lyt nn—1)(8) (11, (n—1)(n—1) + L11,(n71)(n71)(5))_1L1n,(n71)7(z(5§
30

If the closed-loop transfer functions corresponding to Lq;(s) - L,,,(s) contain
no unstable poles, the equivalent systems described by (11) and (30) produce
consistent stability analysis results with the original system.

Considering uncertainty, the system input-output relationship satisfies:

Ay(s) = G,(s)Au(s), G(s) = G(s)( + Ay(s)) (31)

where A, (s) represents input multiplicative uncertainty. The system open-loop
transfer function matrix is:

Ly(s) = L(s)(T + A(s)),  Als) = L(s)2(s) (32)

When retaining loops Ly, (s) and L,,,,(s), the equivalent system open-loop trans-
fer functions are:

L (s) = Ly1(5)+A11(8)=[L12,1,(8)+A15 1,(5)] [IZQ,nn+L22,nn(5)+A22,nn(Sg}i));)l)[L21,nl(S)+A21,nl (s)]

Lsn (S) = Lnn(S>+Ann(3)7[Lnl,n(n—l) (5)+An1,n(n—1) (S>] [Ill,(n—l)(n—l)+L11,En—3)(n—1) (S)+A11,(n—1)(n—1) (5>]71 [L
34

Comparing L, (s) and L, (s), when uncertainty is considered, equivalent mod-
els retaining different loops have different transfer functions before the pertur-
bation term, resulting in different “amplification” effects on uncertainty factors.
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Consequently, different equivalent models have different robustness, and their
characterization of system stability margins also differs. In system control de-
sign, we typically need to select equivalent systems with higher robustness—i.e.,
stability margins should not change significantly after considering model uncer-
tainty. Otherwise, the retained stability margins in control design are quickly
“consumed” by uncertainty, leading to system instability [15].

Robustness Principle: The mechanism criterion (mechanism model) should
have high robustness within the analysis frequency band.

4.4.2 Robustness Discrimination Method: Magnitude of Loop Gain
Sensitivity The magnitude of loop gain sensitivity reflects the sensitivity
of the stability criterion (or its equivalent model’ s open-loop transfer func-
tion/margin function) to oscillation modes. A smaller magnitude indicates bet-
ter robustness of the criterion and equivalent model. Therefore, the ideal model
(with open-loop transfer function L,(s)) has the minimum loop gain sensitivity
magnitude:

|OL,(s1)| = H\}in|OLr(31)| (35)

Since input/output variables can be linearly combined to produce infinite in-
put/output combinations, corresponding to infinite equivalent models through
different mathematical transformations, in practical problems we only need to
consider several equivalent models with clear physical meaning that are conve-
nient for measurement and practical analysis/control as candidates. The sta-
bility criterion with smaller loop gain sensitivity magnitude is selected as the
mechanism criterion for the specific problem:

Loop Gain Sensitivity Robustness Condition: Among candidate stability
criteria, the mechanism criterion should have the minimum loop gain sensitivity
magnitude at the oscillation mode.

Notably, the magnitude of loop gain sensitivity defined herein is consistent with
the transfer function condition number index defined in [15]. The condition
number index refers to the maximum value of transfer function sensitivity to
system perturbations, expressed as [15]:

cond(L) = max W (36)

where § represents system uncertainty perturbations, including parameter or
structural uncertainty; s, denotes the system oscillation mode; R; (s,) reflects
the sensitivity of the transfer function (stability margin) to perturbations, with
its maximum value being the condition number index. A smaller condition
number indicates better model robustness. Combining (17) yields that the ratio
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of R;(s;) to loop gain sensitivity magnitude |OL(s;)| is the sensitivity of the
oscillation mode to perturbations:

Ry (sy)

S§<Sl) |OL(81)| (37)
When the system is determined, the sensitivity Sj(s;) of oscillation mode s; to
a given uncertainty perturbation ¢ is fixed and does not change with modeling
or criterion selection. Therefore, when Ss(s;) # 0 (i.e., perturbation affects
the mode), |OL(s;)| and Ry (s;) (or the condition number index) are consistent.
However, the condition number index calculation depends on detailed system
transfer function models and requires considering all system uncertainties when
obtaining its maximum value, making the process cumbersome. In contrast,
the loop gain sensitivity index only needs to be calculated once, which is more
convenient.

It is also worth noting that, based on the equivalence between time-domain and
frequency-domain, stability criteria derived from the time-domain should also
follow this principle. For multi-machine systems, the issue of how to identify
key units for analysis simplification also exists. Different simplification methods
yield systems with different robustness, and the proposed principles can still be
extended to such multi-machine problems. Meanwhile, the proposed principles
and methods are essentially based on robust control theory and represent a rel-
atively general approach for identifying key loops in complex dynamic systems.

4.5 Flowchart for Stability Criterion Adaptation Analysis

Based on the three qualitative principles and loop gain sensitivity quantitative
index, the equipment stability criterion selection flowchart is shown in Fig. 11:

Fig. 11 Flow chart of equipment stability criterion selection

1. Establish a detailed MIMO model of the system, analyze its main
physical links, retain different output variables to form different stability
criteria and equivalent systems, and constitute a candidate criterion set.

2. Calculate the loop gain sensitivity for each criterion and select the
mechanism criterion according to the three selection principles.

3. Derive the instability mechanism based on the physical meaning of
the mechanism criterion and dominant output variables to obtain the de-
rived mechanism.
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5 Applicability Analysis of Converter Grid-Connected
Impedance Criteria

5.1 Applicability Analysis

Grid-connected converters exhibit multiple stability modes [32]. The three sta-
bility criteria in Section 2.3 respectively describe different aspects of the system.
We further analyze their applicability to different oscillation modes using the
loop gain sensitivity index. The converter grid-connected system structure and
parameters are provided in Appendix B, with calculation results shown in Table
2.

Table 2 Adaptation analysis of three different stability criteria

Sequence
Oscillation Generalized Impedance DC Voltage
Mode s, Impedance Criterion  Criterion Criterion
—1.76 & j9.04 VM = VM = VM =
(outer loop) 0.467£ — 38.23°, 0.373£ — 28.56°, 0.233£ —
OL =0.403£137.94°, OL = 64.78°, OL =
v =—176.17° 0.356£154.59°, 0.140£124.21°,
v = —183.15° v = —188.99°
—0.85+586.25 VM =0.147£-9.16°, VM = VM =
(PLL) OL = 0.205£168.69°, 0.061£169.19°, 0.198£141.81°,
v =—177.85° OL = OL =
0.6994 — 12.31°, 0.5384 —
v = 1.50° 41.02°,
v =2.83°
—9.874+5639.05 VM = VM = VM =
(inner loop) 0.0694£ — 51.26°, 0.037£ — 53.87°, 0.703£ —
OL = OL = 20.11°, OL =
0.0073£129.22°, 0.0038£127.43°, 0.181£162.74°,
v = —180.48° v = —181.30° v = —182.85°

All three criteria can accurately assess system stability across the full frequency
band [8,10,27]. However, in sub/super-synchronous frequency bands with high
PLL participation, ignoring coupling in sequence impedance criteria may pro-
duce incorrect results [10-11], violating the stability equivalence principle and
thus not considered herein.

Case 1 (Current magnitude stability caused by DC voltage outer
loop): Based on vector margins, the generalized impedance, sequence
impedance, and DC voltage criteria characterize stability margins differently,
with tuning angles along the vector margin increase direction being S, = —38.2°,
Bpn = —28.6°, and B~ = —64.8°. Consequently, the discrimination angles are
Yo = —176.2°, vpy = —183.2°, and yp- = —190°, all satisfying the loop gain

chinarxiv.org/items/chinaxiv-202201.00044 Machine Translation


https://chinarxiv.org/items/chinaxiv-202201.00044

ChinaRxiv [$X]

sensitivity angle condition. However, according to the robustness condition,
the three criteria have different |OL| values, with the DC voltage criterion
having the smallest |OL|, indicating better robustness and greater suitability
for analyzing this problem.

Additionally, outer-loop-dominated stability issues may also cause voltage col-
lapse when the equilibrium point reaches a saddle-node bifurcation. When con-
verter output current increases to 1.17 pu, the system loses stable equilibrium.
Approximate analysis at the pre-collapse operating point yields a real root at
s; = 1.67/ — 1.56, where the angle condition is meaningless. According to the
robustness condition, the generalized impedance, modified sequence impedance,
and DC voltage criteria have |OL| values of 0.023, 0.017, and 0.002, respectively,
with the DC voltage criterion still being the mechanism criterion for this mode.

Table 3 Adaptation of different impedance criteria (instability caused
by outer loop)

Criterion Stability Equivalence Nominal Performance Robustness
Generalized Impedance Satisfied Satisfied Moderate
Sequence Impedance Satisfied Satisfied Moderate
DC Voltage Satisfied Satisfied Good

Case 2 (Oscillations caused by PLL): s; = —0.85 £ j86.25 is a weakly
damped mode with vector margins below 0.2 across all criteria, indicating oscilla-
tion risk. Based on the angle condition, discrimination angles are v, = —177.9°,
vpn = 1.5°, and v~ = 2.8°. For sequence impedance and DC voltage criteria,
vector margin increase leads to decreased oscillation mode real parts, causing
“margin reversal” and violating the nominal performance principle. The open-
loop transfer function pole distributions for the three criteria are shown in Fig.
12(a), where sequence impedance and DC voltage criteria contain 1 and 2 open-
loop RHP poles, respectively, while the generalized impedance criterion has
none. The Nyquist curves for the three criteria are plotted in Fig. 12(b), show-
ing that sequence impedance and DC voltage criteria encircle the (—1, j0) point
1 and 2 times, respectively, indicating correct stability judgment results but
“margin reversal” due to open-loop RHP poles, which is unfavorable for nominal
performance analysis and tuning.

Fig. 12 RHP Pole analysis of open loop transfer function for three
different impedance criteria

Since “margin reversal” is related to operating conditions and parameters, this
inadvertently increases the complexity of control parameter tuning based on
these criteria. Further analysis reveals that the generalized impedance criterion
has the smallest |OL|, indicating better model robustness and greater suitability
for robust stability analysis and control.

chinarxiv.org/items/chinaxiv-202201.00044 Machine Translation


https://chinarxiv.org/items/chinaxiv-202201.00044

ChinaRxiv [$X]

Table 4 Adaptation of different impedance criteria (oscillations caused
by phase-locked loop)

Criterion Stability Equivalence Nominal Performance Robustness
Generalized Impedance Satisfied Satisfied Good
Sequence Impedance Satisfied RHP poles exist Moderate
DC Voltage Satisfied RHP poles exist Poor

Case 3 (Oscillations caused by inner loop): s; = —9.87 + j639.05 is a
weakly damped mode. All three criteria satisfy the angle condition based on
discrimination angles. For the robustness condition, the sequence impedance
criterion has the smallest |OL|, indicating better model robustness. Therefore,
the sequence impedance criterion is applicable to oscillations caused by the inner
loop, facilitating mechanism interpretation.

Table 5 Adaptation of different impedance criteria (oscillations caused
by inner loop)

Criterion Stability Equivalence Nominal Performance Robustness
Generalized Impedance  Satisfied Satisfied Moderate
Sequence Impedance Satisfied Satisfied Good

DC Voltage Satisfied Satisfied Poor

In summary: - PLL-dominated oscillations are best explained by the gen-
eralized impedance criterion retaining voltage/current phase angle variables,
with the derived mechanism being phase angle impedance mismatch between
converter and network, belonging to synchronization stability [15]. - Inner-
loop-dominated oscillations are best explained by the modified sequence
impedance criterion retaining sequence components, with the derived mecha-
nism being impedance resonance in positive or negative sequence loops, belong-
ing to electrical resonance. - Quter-loop-dominated instability should be
explained by the DC voltage criterion retaining DC dynamics, where DC voltage
instability transfers to the AC side through converter power conversion, causing
output current and voltage magnitude instability, belonging to voltage stability.

The instability modes for different stability issues in polar coordinates are shown
in Appendix C. Although this paper analyzes criterion applicability and mech-
anisms for converter systems with typical parameters, the parameter selection
follows physical characteristics, making the conclusions E5—F&iEt (have cer-
tain universality).

5.2 Control Strategy Verification Based on Mechanism Criteria

To verify the above conclusions, control parameter tuning is performed under
different equivalent models. Even with identical control objectives (e.g., stabil-
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ity margins), the tuned control performance is inconsistent. To ensure robust
stability, the vector margin magnitude must be at least 0.5 according to control
theory requirements [29].

Following the vector margin tuning method described in Section 3.3, Case 1 has
a damping ratio of 0.19 with adequate margins across all three criteria, thus
not discussed further. Since Case 2 exhibits “margin reversal” making tuning
difficult, we perform control parameter tuning for Case 3 (inner-loop dominated)
and Case 4 (PLL dominated), as shown in Table 6.

Table 6 Parameter tuning of two impedance models

Parameter Generalized Impedance  Sequence Impedance DC Voltage
Inner-loop 0.42, 240 0.55, 250 -
PI tuning

Post-tuning  0.50£25.33° 0.50£25.40° -
VM

Post-tuning  —130.9 + 5640.76 —221.9 &+ j639.50 -
mode

PLL PI 105, 17500 63, 18200 -
tuning

Post-tuning  0.50£35.07° 0.51£7.34° -
VM

Post-tuning  —100.6 4+ 5144.72 —3.21 4 5155.36 -
mode

The original system in Case 3 has a damping ratio of 0.004. Since the DC volt-
age criterion yields excessively large stability margins contrary to reality, it is
not considered for tuning. The generalized impedance and sequence impedance
models achieve post-tuning damping ratios of 0.2 and 0.33, respectively, indicat-
ing good nominal performance. With a 0.1 pu disturbance applied at t = 0.5 s
to the converter terminal voltage, the output d-axis current time-domain wave-
forms are shown in Fig. 13(a). Both converge rapidly, demonstrating adequate
stability margins and nominal performance. At t = 1 s, with a 35% increase
in line inductance, the sequence impedance-tuned system shows better conver-
gence than the generalized impedance-tuned system, indicating higher control
robustness. This aligns with the conclusion that generalized impedance satisfies
nominal performance but violates robustness principles.

Fig. 13 Output active current waveform in EMT simulation

The original system in Case 4 has a damping ratio of 0.01. Since the DC voltage
criterion yields a vector margin magnitude of 0.885 (excessively large and con-
trary to reality), it is not discussed. The generalized impedance and sequence
impedance models achieve post-tuning damping ratios of 0.57 and 0.02, respec-
tively, with the sequence impedance-tuned system having insufficient damping
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and poor nominal performance. With a 0.1 pu disturbance at ¢ = 0.5 s, the
port output d-axis current waveforms are shown in Fig. 13(b). Both converge,
but the sequence impedance-tuned system converges poorly, failing nominal
performance requirements. At ¢ = 1 s, with a 25% increase in line and fil-
ter inductance, the generalized impedance-tuned system remains stable with
robust control, while the sequence impedance-tuned system diverges into oscil-
lation, demonstrating poor control robustness. This matches the judgment that
sequence impedance fails to satisfy both nominal performance and robustness
principles.

6 Conclusion

This paper investigates the applicability of system stability analysis meth-
ods/criteria derived from key input/output variables and the scientific nature
of stability mechanism interpretations. We propose three qualitative principles
—stability equivalence, nominal performance, and robustness—to describe
whether frequency-domain stability criteria are reasonable, along with quanti-
tative indices based on loop gain sensitivity. The study reveals that although
different stability analysis methods/criteria can be mathematically transformed
into one another, their corresponding mechanism interpretations differ, as do
their characterizations of system stability margins and robustness, leading to
different applicable scenarios.

When applying or proposing a new stability analysis method, besides focusing
on stability analysis results, attention must also be paid to nominal performance
and robustness. Furthermore, the principles and methods proposed herein can
provide theoretical foundations for reasonable modeling analysis, control, and
selection of stability assessment indices for complex systems, such as the appli-
cability issues of various short-circuit ratios. This will be the subject of future
research.
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Appendices

Appendix A: Equivalent System Transfer Function Expressions with
Perturbation

The expressions for equivalent system transfer functions with perturbation are
provided in the full paper.

Appendix B: Converter Grid-Connected Model Structure and Pa-
rameters

Fig. B1 Converter grid-connected system model

Table B1 Parameters of grid-connected converter

Parameter Case 1 Case 2 Case 3 [32] Case 4 [15]
System base 1100 1100 1100 1100

Sy (kVA)

AC voltage 1100 1100 1100 1100

base U, (V)

DC voltage 1100 1100 1100 1100

base Upg. (V)

DC capacitor  0.038 0.038 0.038 0.0272

Cdc (pu)

Filter Lf,Cf 0.05, 0.05  0.05, 0.05 0.05, 0.05 0.15, 0.25
(pu)

DC voltage 0.2, 5 1.2, 10 0.8, 6 0.25, 16
loop PI

Current loop 0.6, 18 0.8, 18 0.25, 240 0.476, 3.28
PI
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Parameter Case 1 Case 2 Case 3 [32] Case 4 [15]
PLL PI 50,3600 10,7200 35, 3000 60, 18200
Line - - - -
inductance

Lgrid (pu)

Note: Case parameters follow references [15,32].

Appendix C: Instability Waveforms

Fig. C1 Instability waveform of grid-connected converter
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